15 resultados para Safety of pre-exposure prophylaxis
em Publishing Network for Geoscientific
Resumo:
Adaptive immunity in vertebrates can confer increased resistance against invading pathogens upon re-infection. But how specific parasite genotypes affect the transition from innate to adaptive immunity is poorly understood. Here, we investigated the effects of homologous and heterologous exposures of genetically distinct parasite lineages of the eye fluke Diplostomum pseudospathaceum on gene expression patterns of adaptive immunity in sticklebacks (Gasterosteus aculeatus). We showed that observable differences were largely attributable to final exposures and that there is no transcription pattern characteristic for a general response to repeated infections with D. pseudospathaceum. Final exposure did not unify expression patterns of heterologous pre-exposed fish. Interestingly, heterologous final exposures showed similarities between different treatment groups subjected to homologous pre-exposure. The observed pattern was supported by parasite infection rates and suggests that host immunization was optimized towards an adaptive immune response that favored effectiveness against parasite diversity over specificity.
Resumo:
Sensitivity of marine crustaceans to anthropogenic CO2 emissions and the associated acidification of the oceans may be less than that of other, especially lower, invertebrates. However, effects on critical transition phases or carry-over effects between life stages have not comprehensively been explored. Here we report the impact of elevated seawater PCO2 values (3100 µatm) on Hyas araneus during the last 2 weeks of their embryonic development (pre-hatching phase) and during development while in the consecutive zoea I and zoea II larval stages (post-hatching phase). We measured oxygen consumption, dry weight, developmental time and mortality in zoea I to assess changes in performance. Feeding rates and survival under starvation were investigated at different temperatures to detect differences in thermal sensitivities of zoea I and zoea II larvae depending on pre-hatch history. When embryos were pre-exposed to elevated PCO2 during maternal care, mortality increased about 60% under continued CO2 exposure during the zoea I phase. The larvae that moulted into zoea II, displayed a developmental delay by about 20 days compared to larvae exposed to control PCO2 during embryonic and zoeal phases. Elevated PCO2 caused a reduction in zoea I dry weight and feeding rates, while survival of the starved larvae was not affected by the seawater CO2 concentration. In conclusion, CO2 effects on egg masses under maternal care carried over to the first larval stages of crustaceans and reduced their survival and development to levels below those previously reported in studies exclusively focussing on acute PCO2 effects on the larval stages.
Resumo:
Extensive high-grade polydeformed metamorphic provinces surrounding Archaean cratonic nuclei in the East Antarctic Shield record two tectono-thermal episodes in late Mesoproterozoic and late Neoproterozoic-Cambrian times. In Western Dronning Maud Land, the high-grade Mesoproterozoic Maud Belt is juxtaposed against the Archaean Grunehogna Province and has traditionally been interpreted as a Grenvillian mobile belt that was thermally overprinted during the Early Palaeozoic. Integration of new U-Pb sensitive high-resolution ion microprobe and conventional single zircon and monazite age data, and Ar-Ar data on hornblende and biotite, with thermobarometric calculations on rocks from the H.U. Sverdrupfjella, northern Maud Belt, resulted in a more complex P-T-t evolution than previously assumed. A c. 540?Ma monazite, hosted by an upper ampibolite-facies mineral assemblage defining a regionally dominant top-to-NW shear fabric, provides strong evidence for the penetrative deformation in the area being of Pan-African age and not of Grenvillian age as previously reported. Relics of an eclogite-facies garnet-omphacite assemblage within strain-protected mafic boudins indicate that the peak metamorphic conditions recorded by most rocks in the area (T = 687-758°C, P = 9·4-11·3?kbar) were attained subsequent to decompression from P > 12·9?kbar. By analogy with limited U-Pb single zircon age data and on circumstantial textural grounds, this earlier eclogite-facies metamorphism is ascribed to subduction and accretion around 565?Ma. Post-peak metamorphic K-metasomatism under amphibolite-facies conditions is ascribed to the intrusion of post-orogenic granite at c. 480?Ma. The recognition of extensive Pan-African tectonism in the Maud Belt casts doubts on previous Rodinia reconstructions, in which this belt takes a pivotal position between East Antarctica, the Kalahari Craton and Laurentia. Evidence of late Mesoproterozoic high-grade metamorphism during the formation of the Maud Belt exists in the form of c. 1035?Ma zircon overgrowths that are probably related to relics of granulite-facies metamorphism recorded from other parts of the Maud Belt. The polymetamorphic rocks are largely derived from a c. 1140?Ma volcanic arc and 1072 ± 10?Ma granite.