159 resultados para SURFACE RESPONSE
em Publishing Network for Geoscientific
Resumo:
The ~90-year Gleissberg and ~200-year de Vries cycles have been identified as two distinctive quasi-periodic components of Holocene solar activity. Evidence exists for the impact of such multi-decadal to centennial-scale variability in total solar irradiance (TSI) on climate, but concerning the ocean, this evidence is mainly restricted to the surface response. Here we use a comprehensive global climate model to study the impact of idealized solar forcing, representing the Gleissberg and de Vries cycles, on global ocean potential temperature at different depth levels, after a recent proxy record indicates a signal of TSI anomalies in the northeastern Atlantic at mid-depth. Potential impacts of TSI anomalies on deeper oceanic levels are climatically relevant due to their possible effect on ocean circulation by altering water mass characteristics. Simulated solar anomalies are shown to penetrate the ocean down to at least deep-water levels. Despite the fact that the two forcing periods differ only by a factor of ~2, the spatial pattern of response is significantly distinctive between the experiments, suggesting different mechanisms for solar signal propagation. These are related to advection by North Atlantic Deep Water flow (200-year forcing), and barotropic adjustment in the South Atlantic in response to a latitudinal shift of the westerly wind belt (90-year forcing).
Resumo:
Proxy indicators of sea surface temperature and equatorial divergence based on radiolarian assemblage data, and of trade wind intensity based on eolian grain size data show similar aspects of variability during the late Pleistocene: All indicators fluctuate at higher frequencies than the 100,000-year glacial-interglacial cycle, display reduced amplitude variations since 300,000 years ago, exhibit a change in the record character at about 300,000 years ago (the mid-Brunhes climatic event), and have higher amplitude variations in sediments 300,000-850,000 years old. Time series analyses were conducted to determine the spectral character of each record (delta18O of planktonic foraminifer, sea surface temperature values, equatorial divergence indicators, and wind intensity indicators) and to quantify interrecord coherence and phase relationships. The record was divided at the 300,000-year clear change in climatic variability (nonstationarity). The delta18O-based time scale is better lower in the core so our spectral analyses concentrated on the interval from 402,000-774,000 years. The delta18O spectra show 100,000- and 41,000-year power in the younger portion, 0-300,000 years, and 100,000-, 41,000- and 23,000-year power in the older interval, all highly coherent and in phase with the SPECMAP average stacked isotope record. Unlike the isotope record the dominant period in both the eolian grain size and equatorial divergence indicators is 31,000 years. This period is also important in the sea surface temperature signal where the dominant spectral peak is 100,000 years. The 31,000-year spectral component is coherent and in phase between the eolian and divergence records, confirming the link between atmospheric and ocean surface circulation for the first time in the paleoclimate record. Since the 31,000-year power appears in independent data sets within this core and also appears in other equatorial records [J. Imbrie personal communication, 1987], we assume it to be real and representative of both a nonlinear response to orbital forcing, possibly a combination of orbital tilt and eccentricity, and some resonance phenomenon required to amplify the response at this period so that it appears as a dominant frequency component. The mid-Brunhes climatic event is an important aspect of these records, but its cause remains unknown.
Resumo:
During the Middle Miocene climate transition about 14 million years ago, the Antarctic ice sheet expanded to near-modern volume. Surprisingly, this ice sheet growth was accompanied by a warming in the surface waters of the Southern Ocean, whereas a slight deep-water temperature increase was delayed by more than 200 thousand years. Here we use a coupled atmosphere-ocean model to assess the relative effects of changes in atmospheric CO2 concentration and ice sheet growth on regional and global temperatures. In the simulations, changes in the wind field associated with the growth of the ice sheet induce changes in ocean circulation, deep-water formation and sea-ice cover that result in sea surface warming and deep-water cooling in large swaths of the Atlantic and Indian ocean sectors of the Southern Ocean. We interpret these changes as the dominant ocean surface response to a 100-thousand-year phase of massive ice growth in Antarctica. A rise in global annual mean temperatures is also seen in response to increased Antarctic ice surface elevation. In contrast, the longer-term surface and deep-water temperature trends are dominated by changes in atmospheric CO2 concentration. We therefore conclude that the climatic and oceanographic impacts of the Miocene expansion of the Antarctic ice sheet are governed by a complex interplay between wind field, ocean circulation and the sea-ice system.
Resumo:
A high-resolution history of paleoceanographic changes in the subpolar waters of the southern margin of the Subtropical Convergence Zone during the last 130 kyr, is present in foraminiferal assemblages of DSDP Site 594. The foraminifera indicate that sea-surface temperatures during the Last Interglacial Climax were warmer than today, and that between substage 5d through to the end of isotope stage 2, temperatures were mostly cooler than Holocene temperatures. The paleotemperatures suggest that (1) the Subtropical Convergence was located over the site during substage 5e, later moving further north, then moving southwards to near the site during the Holocene, and (2) the Polar Front was positioned over the Site during glacial stages 6, 4, 2 and possibly parts of stage 3. Several major events are indicated by the nannofloral assemblages during these large changes in sea-surface temperature and associated reorganization of ocean circulation. First, the time-progressive trends between E. huxleyi and medium to large Gephyrocupsa are unique to this site, with E. huxleyi dominating over medium Gephyrocupsa during stages 5c-a, middle part of stage 4 and after the middle point of stage 3. This unusual trend may (at least partly) be caused by the shift of the Polar Front across the site. Second, upwelling flora (E. huxleyi and small placoliths) increase in abundance during stages 1, 3 and 5, suggesting that upwelling or disturbance of water stratification took place during the interglacials. Thirdly, there are no significant differences between the distribution patterns of the various morphotypes of medium to large Gephyrocupsu, and the combined value of all medium Gephyrocupsu increases in abundance during glacials (stages 2 and 4 and the end of stage 6), similar to the abundance trends in benthic foraminifera. Finally, subordinate nannofossil taxa also show distinctive climatic trends during the last glacial cycle: (1) Syrucosphaera spp. are present in increased abundance during warmer extremes in climate (substages 5e, 5a, and stage 1); (2) Coccolithus pelagicus and Culcidiscus leptoporus dominate the subordinate nannofossil taxa, and their relative proportions seem to provide a useful paleoceanographic index, with C. pelagicus dominating when the Polar Front Zone is over the site (stages 6, 4 and 2), whilst C. leptoporus is relatively more abundant when the STC is positioned over the site (stages 1 and 5e). Increased abundance of C. pelagicus also can indicate intensified coastal upwelling.
Resumo:
In order to assess how insolation-driven climate change superimposed on sea level rise and millennial events influenced the Red Sea during the Holocene, we present new paleoceanographic records from two sediment cores to develop a comprehensive reconstruction of Holocene circulation dynamics in the basin. We show that the recovery of the planktonic foraminiferal fauna after the Younger Dryas was completed earlier in the northern than in the central Red Sea, implying significant changes in the hydrological balance of the northern Red Sea region during the deglaciation. In the early part of the Holocene, the environment of the Red Sea closely followed the development of the Indian summer monsoon and was dominated by a circulation mode similar to the current summer circulation, with low productivity throughout the central and northern Red Sea. The climatic signal during the late Holocene is dominated by a faunal transient event centered around 2.4 ka BP. Its timing corresponds to that of North Atlantic Bond event 2 and to a widespread regionally recorded dry period. This faunal transient is characterized by a more productive foraminiferal fauna and can be explained by an intensification of the winter circulation mode and high evaporation. The modern distribution pattern of planktonic foraminifera, reflecting the prevailing circulation system, was established after 1.7 ka BP.
Resumo:
It is still an open question how equilibrium warming in response to increasing radiative forcing - the specific equilibrium climate sensitivity S - depends on background climate. We here present palaeodata-based evidence on the state dependency of S, by using CO2 proxy data together with a 3-D ice-sheet-model-based reconstruction of land ice albedo over the last 5 million years (Myr). We find that the land ice albedo forcing depends non-linearly on the background climate, while any non-linearity of CO2 radiative forcing depends on the CO2 data set used. This non-linearity has not, so far, been accounted for in similar approaches due to previously more simplistic approximations, in which land ice albedo radiative forcing was a linear function of sea level change. The latitudinal dependency of ice-sheet area changes is important for the non-linearity between land ice albedo and sea level. In our set-up, in which the radiative forcing of CO2 and of the land ice albedo (LI) is combined, we find a state dependence in the calculated specific equilibrium climate sensitivity, S[CO2,LI], for most of the Pleistocene (last 2.1 Myr). During Pleistocene intermediate glaciated climates and interglacial periods, S[CO2,LI] is on average ~ 45 % larger than during Pleistocene full glacial conditions. In the Pliocene part of our analysis (2.6-5 Myr BP) the CO2 data uncertainties prevent a well-supported calculation for S[CO2,LI], but our analysis suggests that during times without a large land ice area in the Northern Hemisphere (e.g. before 2.82 Myr BP), the specific equilibrium climate sensitivity, S[CO2,LI], was smaller than during interglacials of the Pleistocene. We thus find support for a previously proposed state change in the climate system with the widespread appearance of northern hemispheric ice sheets. This study points for the first time to a so far overlooked non-linearity in the land ice albedo radiative forcing, which is important for similar palaeodata-based approaches to calculate climate sensitivity. However, the implications of this study for a suggested warming under CO2 doubling are not yet entirely clear since the details of necessary corrections for other slow feedbacks are not fully known and the uncertainties that exist in the ice-sheet simulations and global temperature reconstructions are large.
Resumo:
In order to reconstruct Late Quatemary variations of surface oceanography in the eastequatorial South Atlantic, time series of sea-surface temperatures (SST) and paleoproductivity were established from cores recovered in the Guinea and Angola Basins, and at the Walvis Ridge. These records, based on sedimentary alkenone and organic carbon concentrations, reveal that during the last 350,000 years surface circulation and productivity changes in the east-equatorial South Atlantic were highiy sensitive to climate forcing at 23- and 100-kyr periodicities. Covarying SST and paleoproductivity changes at the equator and at the Walvis Ridge appear to be driven by variations in zonal trade-wind intensity, which forces intensification or reduction of coastal and equatorial upwelling, as well as enhanced Benguela cold water advection from the South. Phase relationships of precessional variations in the paleoproductivity and SST records from the distinct sites were evaluated with respect to boreal summer insolation over Africa, movements of southem ocean thermal fronts, and changes in global ice volume. The 23-kyr phasing implies a sensitivity of eastem South Atlantic surface water advection and upwelling to West African monsoon intensity and to changes in the position ofthe subtropical high pressure cell over the South Atlantic, both phenomena which modulate zonal strength of southeasterly trades. SST and productivity changes north of 20°S lack significant variance at the 41-kyr periodicity; and at the Walvis Ridge and the equator lead changes in ice volume. This may indicate that obliquity-driven clirnate change, characteristic for northem high latitudes, e.g fluctuations in continental ice masses, did not substantially influence subtropical and tropical surface circulation in the South Atlantic. At the 23-kyr cycle SST and productivity changes in the eastern Angola Basin lag those in the equatorial Atlantic and at the Walvis Ridge by about 3500 years. This lag is explained by variations in cross-equatorial surface water transport and west-east countercurrent retum flow modifying precessional variations of SST and productivity in the eastem Angola Basin relative to those in the mid South Atlantic area under the central field of zonal trade winds. Sea level-related shifts of upwelling cells in phase with global clirnate change may be also recorded in SST and productivity variability along the continental margin off Southwest Africa. They may account for the delay of the paleoceanogreaphic signal from continental margin sites with respect to that from the pelagic sites at the equator and the Walvis Ridge.
Resumo:
Marine endosymbiotic heterocystous cyanobacteria make unique heterocyst glycolipids (HGs) containing pentose (C5) moieties. Functionally similar HGs with hexose (C6) moieties found in free-living cyanobacteria occur in the sedimentary record, but C5 HGs have not been documented in the natural environment. Here we developed a high performance liquid chromatography multiple reaction monitoring (MRM) mass spectrometry (HPLC-MS2) method specific for trace analysis of long chain C5HGs and applied it to cultures of Rhizosolenia clevei Ostenfeld and its symbiont Richelia intracellularis which were found to contain C5 HGs and no C6 HGs. The method was then applied to suspended particulate matter (SPM) and surface sediment from the Amazon plume region known to harbor marine diatoms carrying heterocystous cyanobacteria as endosymbionts. C5 HGs were detected in both marine SPM and surface sediments, but not in SPM or surface sediment from freshwater settings in the Amazon basin. Rather, the latter contained C6 HGs, established biomarkers for free-living heterocystous cyanobacteria. Our results indicate that the C5 HGs may be potential biomarkers for marine endosymbiotic heterocystous cyanobacteria.
Resumo:
The record of planktonic foraminifer abundances at Site 662 during the late Pliocene (~1.7-2.1 Ma) was examined to determine variations in estimated sea-surface temperature (SST). We compared the results to SST estimates from a late Pleistocene record (~1.5-200 ka) from nearby piston core RC24-7. Within the primary orbital band (~20-100 k.y.), the cold-season responses of both equatorial Atlantic records are dominated by the precessional period, and the computed range of variability is quite similar. This is in contrast to the evolution of the dominant climatic response from 41 to 100 k.y. at high northern latitudes between the late Pliocene and the late Pleistocene. The orbital-band SST response in this region of greatest divergence in the equatorial Atlantic has not changed appreciably between the late Pliocene and the late Pleistocene.
Resumo:
A comprehensive hydroclimatic data set is presented for the 2011 water year to improve understanding of hydrologic processes in the rain-snow transition zone. This type of dataset is extremely rare in scientific literature because of the quality and quantity of soil depth, soil texture, soil moisture, and soil temperature data. Standard meteorological and snow cover data for the entire 2011 water year are included, which include several rain-on-snow events. Surface soil textures and soil depths from 57 points are presented as well as soil texture profiles from 14 points. Meteorological data include continuous hourly shielded, unshielded, and wind corrected precipitation, wind speed, air temperature, relative humidity, dew point temperature, and incoming solar and thermal radiation data. Sub-surface data included are hourly soil moisture data from multiple depths from 7 soil profiles within the catchment, and soil temperatures from multiple depths from 2 soil profiles. Hydrologic response data include hourly stream discharge from the catchment outlet weir, continuous snow depths from one location, intermittent snow depths from 5 locations, and snow depth and density data from ten weekly snow surveys. Though it represents only a single water year, the presentation of both above and below ground hydrologic condition makes it one of the most detailed and complete hydro-climatic datasets from the climatically sensitive rain-snow transition zone for a wide range of modeling and descriptive studies.
Resumo:
The Late Quaternary benthic foraminifera of four deep-sea cores off Western Australia (ODP 122-760A, ODP 122-762B, BMR96GC21 and RC9-150) have been examined for evidence of increased surface productivity to explain the anomalously low sea-surface paleotemperatures inferred by planktic foraminifera for the last and penultimate glaciations. The delta13C trends of Cibicidoides wuellerstorfi, and differences between the delta13C trends of planktics (Globigerinoides sacculifer) and benthics (C. wuellerstorfi) in the four cores indicate that during stage 6 bottom waters were significantly depleted in delta13C, and strong delta13C gradients were established in the water column, while during stage 2 and the Last Glacial Maximum, delta13C trends did not differ greatly from that of the Holocene. Two main assemblages of benthic foraminifera were identified by principal component analyses: one dominated by Uvigerina peregrina, another dominated by U. proboscidea. Abundance of these Uvigerinids, and of taxa preferring an infaunal microhabitat, and of Epistominella exigua and Bulimina aculeata indicate that episodes of high influx of particulate organic matter were established in most sites during glacial episodes, and particularly so during stage 6, while evidence for upwelling during the Last Glacial Maximum is less strong. The Penultimate Glaciation upwellings were established within the areas of low sea-surface paleotemperature indicated by planktic foraminifera. During the Last Interglacial Climax, upwelling appears to have been established in an isolated region offshore from a strengthened Leeuwin Current off North West Cape. Last Glacial Maximum delta13C values of C. wuellerstorfi at waterdepths of less than 2000 m show smaller than global mean glacial-interglacial changes suggesting the development of a deep hydrological front. A similar vertical stratification/bathyal front was also established during the Penultimate Glaciation.
Resumo:
Benthic fluxes and pore-water compositions of silicic acid, nitrate and phosphate were investigated for surface sediments of the abyssal Arabian Sea during four cruises (1995-1998). Five sites located in the northern (NAST), western (WAST), central (CAST), eastern (EAST), and southern (SAST) Arabian Sea were revisited during intermonsoonal periods after the NE- and SW-Monsoon. At these sites, benthic fluxes of remineralized nutrients from the sediment to the bottom water of 36-106, 102-350 and 4-16 mmol/m**2/yr were measured for nitrate, silicic acid and phosphate, respectively. The benthic fluxes and pore-water compositions showed a distinct regional pattern. Highest fluxes were observed in the western and northern region of the Arabian Sea, whereas decreasing fluxes were derived towards the southeast. At WAST, the general temporal pattern of primary production, related to the NE- and SW-Monsoon, is reflected by benthic fluxes. In contrast, at sites NAST, SAST, CAST, and EAST a temporal pattern of fluxes in response to the monsoon is not obvious. Our results reveal a clear coupling between the general regional pattern of production in surface waters and the response of the benthic environment, as indicated by the flux of remineralized nutrients, though a spatially differing degree of decoupling during transport and remineralization of particulate organic matter and biogenic opal was observed. This has to be taken into account regarding budget calculations and paleoceanographic topics.
Resumo:
Marine mammals forage in dynamic environments characterized by variables that are continuously changing in relation to large-scale oceanographic processes. In the present study, behavioural states of satellite-tagged juvenile southern elephant seals (n = 16) from Marion Island were assessed for each reliable location, using variation in turning angle and speed in a state-space modelling framework. A mixed modelling approach was used to analyse the behavioural response of juvenile southern elephant seals to sea-surface temperature and proximity to frontal and bathymetric features. The findings emphasised the importance of frontal features as potentially rewarding areas for foraging juvenile southern elephant seals and provided further evidence of the importance of the area west of Marion Island for higher trophic-level predators. The importance of bathymetric features during the transit phase of juvenile southern elephant seal migrations indicates the use of these features as possible navigational cues.