64 resultados para SUBWAVELENGTH HOLE ARRAYS

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seventeen whole-rock samples, generally taken at 25- to 50-meter intervals from 5 to 560 meters sub-basement in Deep Sea Drilling Project Hole 504B, were analyzed for 87Sr/86Sr ratios, and rubidium and strontium concentrations. Ten of these samples also were analyzed for Pb-isotope composition. Strontium-isotope ratios for eight samples from the upper 260 meters of the hole range from 0.70287 to 0.70377, with a mean of 0.70320. In the interval 330 to 560 meters, five samples have a restricted range of 0.70259 to 0.70279, with a mean of 0.70266, almost identical to the average value of fresh mid-ocean-ridge basalts. In the interval 260 to 330 meters, approximately intermediate strontium- isotope ratios are found. The higher 87Sr/86Sr ratios in the upper part of the hole can be interpreted in terms of strontium-isotope alteration during basalt-sea-water interaction. Relative to average fresh mid-ocean ridge basalts, the upper 260 meters of basalts are enriched by an average of about 9% in sea-water strontium 87Sr/86Sr = 0.7091). This Sr presumably is located in the smectites, which, as the main secondary minerals throughout the hole, replace olivine and matrix glass and locally fill vesicles (analyzed samples contained no veins). The strontium-isotope data strongly suggest that the integrated flux of sea water through the upper part of the Hole 504B crust has been greater than through the lower part. This is also suggested by (1) the common occurrence of Feoxide- hydroxide minerals as alteration products above 270 meters, but their near absence below 320 meters, (2) the presence of vein calcite above 320 meters, but its near absence below this level, and (3) the occurrence of vein pyrite only below a depth of 270 meters. Sea-water circulation in the lower basalts may have been partly restricted by the greater number of relatively impermeable massive lava flows below 230 meters sub-basement. Although sufficient sea water was present within the lower part of the hole to produce smectitic alteration products, the overall water /rock ratio was low enough to prevent significant modification of strontium-isotope ratios. Lead-isotope ratios of Hole 504B basalts form approximately linear arrays in plots of 208Pb/204Pb and 207Pb/204Pb versus 206Pb/204Pb. The arrays are similar to those reported for basalts from other mid-ocean ridges. There is no trend in Hole 504B lead-isotope ratios with vertical position in the basement. The arrays indicate that the lead-isotope composition of the upper mantle from which the Hole 504B basaltic melts were derived was inhomogeneous.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The compatibility of vanadium (V) during mantle melting is a function of oxygen fugacity (fO2): at high fO2's, V becomes more incompatible. The prospects and limitations of using the V content of peridotites as a proxy for paleo-fO2 at the time of melt extraction were investigated here by assessing the uncertainties in V measurements and the sensitivity of V as a function of degree of melt extracted and fO2. V-MgO and V-Al2O3 systematics were found to be sensitive to fO2 variations, but consideration of the uncertainties in measurements and model parameters indicates that V is sensitive only to relative fO2 differences greater than ~2 log units. Post-Archean oceanic mantle peridotites, as represented by abyssal peridotites and obducted massif peridotites, have V-MgO and -Al2O3 systematics that can be modeled by 1.5 GPa melting between FMQ - 3 and FMQ - 1. This is consistent with fO2's of the mantle source for mid-ocean ridge basalts (MORBs) as determined by the Fe3+ activity of peridotitic minerals and basaltic glasses. Some arc-related peridotites have slightly lower V for a given degree of melting than oceanic mantle peridotites, and can be modeled by 1.5 GPa melting at fO2's as high as FMQ. However, the majority of arc-related peridotites have V-MgO systematics overlapping that of oceanic mantle peridotites, suggesting that although some arc mantle may melt under slightly oxidizing conditions, most arc mantle does not. The fact that thermobarometrically determined fO2's in arc peridotites and lavas can be significantly higher than that inferred from V systematics, suggests that V retains a record of the fO2 during partial melting, whereas the activity of Fe3+ in arc peridotitic minerals and lavas reflect subsequent metasomatic overprints and magmatic differentiation/emplacement processes, respectively. Peridotites associated with middle to late Archean cratonic mantle are characterized by highly variable V-MgO systematics. Tanzanian cratonic peridotites have V systematics indistinguishable from post-Archean oceanic mantle and can be modeled by 3 GPa partial melting at ~FMQ - 3. In contrast, many South African and Siberian cratonic peridotites have much lower V contents for a given degree of melting, suggesting at first glance that partial melting occurred at high fO2's. More likely, however, their unusually low V contents for a given degree of melting may be artifacts of excess orthopyroxene, a feature that pervades many South African and Siberian peridotites but not the Tanzanian peridotites. This is indicated by the fact that the V contents of South African and Siberian peridotites are correlated with increases in SiO2 content, generating data arrays that cannot be modeled by partial melting but can instead be generated by the addition of orthopyroxene through processes unrelated to primary melt depletion. Correction for orthopyroxene addition suggests that the South African and Siberian peridotites have V-MgO systematics similar to those of Tanzanian peridotites. Thus, if the Tanzanian peridotites represent the original partial melting residues, and if the South African and Siberian peridotites have been modified by orthopyroxene addition, then there is no indication that Archean cratonic mantle formed under fO2's significantly greater than that of modern oceanic mantle. Instead, the fO2's inferred from the V systematics in these three cratonic peridotite suites are within range of modern oceanic mantle. This also suggests that the transition from a highly reducing mantle in equilibrium with a metallic core to the present oxidized state must have occurred by late Archean times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Late Jurassic-early Cretaceous black shales and an overlying sequence of Albian-Campanian zeolitic claystones from the Falkland Plateau (DSDP/IPOD Leg 71, Site 511) were analyzed for tetrapyrrole pigment type and abundance. The "black shale" sequence was found to be rich in DPEP-series dominated free-base, nickel (Ni) and, to a lesser extent, vanadyl (V = 0) porphyrins. A low level of organic maturity (i.e. precatagenesis) is indicated for these strata as nickel chelation by free-base porphyrins is only 50-75% complete, proceeding down-hole to 627 meters sub-bottom. Electronic and mass spectral data reveal that the proposed benzo-DPEP (BD) and tetrahydrobenzo-DPEP (THBD) series are present in the free-base and Ni species, as well as the more usual occurrence in V = 0 porphyrin arrays. Highly reducing conditions are suggested by an abundance of the PAH perylene, substantial amounts of the THBD/BD series and a redox equilibrium between free-base DPEP and 7,8-dihydro-DPEP series, which exist in a 7:1 molar ratio. The Albian-Campanian claystone strata were found to be tetrapyrrolepoor, and those pigments present were typed as Cu/Ni highly dealkylated (C26 max.) etioporphyrins, thought to be derived via redeposition and oxidation of terrestrial organic matter (OM). Results from the present study are correlated to our past analyses of Jurassic-Cretaceous sediments from Atlantic margins in an effort to relate tetrapyrrole quality and quantity to basin evolution and OM sources in the proto-Atlantic.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tochilinite (approximately FeS(Mg,Fe)(OH)2) is locally abundant in Hole 1068A serpentinites from Cores 173-1068A-21R and 22R. It occurs in veins, as fillings in void space, and in intergrowths with serpentine and andradite. An apparently related mineral, but with Ca and Al largely replacing Mg, occurs in association with, and possibly as a replacement of, pyrrhotite in serpentinite breccias from the bottom of Core 173-1068A-20R. The transition from Mg-Fe-rich brucite tochilinites to Ca- and S-rich carbonate tochilinites is consistent with increasing sulfur and oxygen activity upsection. Tochilinite has been reported at other sites on the Iberia Abyssal Plain and is abundant to the point of being a rock-forming mineral in several samples from Site 1068. Rather than being a mineralogical curiosity, tochilinite appears to be common and a major sink for sulfur in the upper serpentinites of the Iberia Abyssal Plain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several episodes of abrupt and transient warming, each lasting between 50,000 and 200,000 years, punctuated the long-term warming during the Late Palaeocene and Early Eocene (58 to 51 Myr ago) epochs**1,2. These hyperthermal events, such as the Eocene Thermal Maximum 2 (ETM2) that took place about 53.5 Myr ago**2, are associated with rapid increases in atmospheric CO2 content. However, the impacts of most events are documented only locally**3,4. Here we show, on the basis of estimates from the TEX86' proxy, that sea surface temperatures rose by 3-5 °C in the Arctic Ocean during the ETM2. Dinoflagellate fossils demonstrate a concomitant freshening and eutrophication of surface waters, which resulted in euxinia in the photic zone. The presence of palm pollen implies**5 that coldest month mean temperatures over the Arctic land masses were no less than 8 °C, in contradiction of model simulations that suggest hyperthermal winter temperatures were below freezing**6. In light of our reconstructed temperature and hydrologic trends, we conclude that the temperature and hydrographic responses to abruptly increased atmospheric CO2 concentrations were similar for the ETM2 and the better-described Palaeocene-Eocene Thermal Maximum**7,8, 55.5 Myr ago.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seventeen whole-rock samples, generally taken at 25-50 m intervals from 5 to 560 m sub-basement in Hole 504B, drilled in 6.2 m.y. old crust, were analysed for 87Sr/86Sr ratios, Sr and Rb concentrations, and 18O/16O ratios. Sr isotope ratios for 8 samples from the upper 260 m of the hole range from 0.70287 to 0.70377, with a mean of 0.70320. In the 330-560 m interval, 5 samples have a restricted range of 0.70255-0.70279, with a mean of 0.70266, the average value for fresh mid-ocean ridge basalts (MORB). In the 260-330 m interval, approximately intermediate Sr isotopic ratios are found. Delta18O values (?) range from 6.4 to 7.8 in the upper 260 m, 6.2-6.4 in the 270-320 m interval, and 5.8-6.2 in the 320-560 m interval. The values in the upper 260 m are typical for basalts which have undergone low-temperature seawater alteration, whereas the values for the 320-560 m interval correspond to MORB which have experienced essentially no oxygen isotopic alteration. The higher 87Sr/86Sr and 18O/16O ratios in the upper part of the hole can be interpreted as the result of a greater overall water/rock ratio in the upper part of the Hole 504B crust than in the lower part. Interaction of basalt with seawater (87Sr/86Sr = 0.7091) increased basalt 87Sr/86Sr ratios and produced smectitic alteration products which raised whole-rock delta18O values. Seawater circulation in the lower basalts may have been partly restricted by the greater number of relatively impermeable massive lava flows below about 230 m sub-basement. These flows may have helped to seal off lower basalts from through-flowing seawater.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: