7 resultados para SUBGENUS SCHIZOTRYPANUM
em Publishing Network for Geoscientific
Resumo:
Usnea species of the Neuropogon group are amongst the most widespread and abundant macrolichens in Antarctic regions. Four principal species, U. antarctica, U. aurantiaco-atra, U. sphacelata and U. subantarctica, have been described on morphological grounds. However, identification to species level is often difficult and atypical morphologies frequently arise. Over 400 specimens were collected on the Antarctic Peninsula and Falkland Islands. Both morphological and molecular characters (ITS and RPB1) were used to compare samples to clarify taxonomic relationships. Morphological characteristics used included presence of apothecia, apothecial rays, soredia, papillae, fibrils, pigmentation and the diameter of the central axis as a proportion of branch diameter. Results revealed a very close relationship between U. antarctica and U. aurantiaco-atra, suggesting that they might constitute a species pair or be conspecific. Usnea sphacelata was comprised of at least two genetically distinct groups with no clear differences in morphology. One group included the first reported fertile specimen of this species. Usnea subantarctica was phylogenetically distinct from the other main Antarctic Usnea species, but clustered with U. trachycarpa. Genetic variation was evident within all species although there was no clear correlation between geographic origin and genetic relatedness. Phylogenetic analyses indicated that species circumscription in the Neuropogon group needs revision, with the principal species being non-monophyletic. None of the morphological characters, or groups of characters, used in this study proved to be completely unambiguous markers for a single species. However, axis thickness was supported as being informative for the identification of monophyletic lineages within the group.
Resumo:
The few existing studies on macrobenthic communities of the deep Arctic Ocean report low standing stocks, and confirm a gradient with declining biomass from the slopes down to the basins as commonly reported for deep-sea benthos. In this study we have further investigated the relationship of faunal abundance (N), biomass (B) as well as community production (P) with water depth, geographical latitude and sea ice concentration. The underlying dataset combines legacy data from the past 20 years, as well as recent field studies selected according to standardized quality control procedures. Community P/B and production were estimated using the multi-parameter ANN model developed by Brey (2012). We could confirm the previously described negative relationship of water depth and macrofauna standing stock in the Arctic deep-sea. Furthermore, the sea-ice cover increasing with high latitudes, correlated with decreasing abundances of down to < 200 individuals/m**2, biomasses of < 65 mg C/m**2 and P of < 75 mg C/m**2/y. Stations under influence of the seasonal ice zone (SIZ) showed much higher standing stock and P means between 400 - 1400 mg C/m**2/y; even at depths up to 3700 m. We conclude that particle flux is the key factor structuring benthic communities in the deep Arctic ocean, explaining both the low values in the ice-covered Arctic basins and the high values along the SIZ.
Resumo:
The influence of orbital precession on early Paleogene climate and ocean circulation patterns in the southeast Pacific region is investigated by combining environmental analyses of cyclic Middle Eocene sediments and palynomorph records recovered from ODP Hole 1172A on the East Tasman Plateau with climate model simulations. Integration of results indicates that in the marine realm, direct effects of precessional forcing are not pronounced, although increased precipitation/runoff could have enhanced dinoflagellate cyst production. On the southeast Australian continent, the most pronounced effects of precessional forcing were fluctuations in summer precipitation and temperature on the Antarctic Margin. These fluctuations resulted in vegetational changes, most notably in the distribution of Nothofagus (subgenus Brassospora). The climate model results suggest significant fluctuations in sea ice in the Ross Sea, notably during Austral summers. This is consistent with the influx of Antarctic heterotrophic dinoflagellates in the early part of the studied record. The data demonstrate a strong precessionally driven climate variability and thus support the concept that precessional forcing could have played a role in early Antarctic glaciation via changes in runoff and/or precipitation.