24 resultados para SUBDUCTION INITIATION
em Publishing Network for Geoscientific
Resumo:
This chemical and petrologic study of rocks from Site 448 on the Palau-Kyushu Ridge is designed to answer some fundamental questions concerning the volcanic origin of remnant island arcs. According to the reconstruction of the Western Pacific prior to about 45 m.y. ago (Hilde et al., 1977), the site of the Palau-Kyushu Ridge was a major transform fault. From a synthesis of existing geological and geophysical data (R. Scott et al., this volume), it appears that the ridge originated by subduction of the Pacific plate under the West Philippine Basin. Thus the Palau-Kyushu Ridge should be a prime example of both initial volcanism of an incipient arc formed by interaction of oceanic lithospheric plates and remnant-arc volcanic evolution. The Palau-Kyushu Ridge was an active island arc from about 42 to 30 m.y. ago, after which initiation of back-arc spreading formed the Parece Vela Basin (R. Scott et al., this volume; Karig, 1975a). This spreading left the western portion of the ridge as a remnant arc that separates the West Philippine Basin from the Parece Vela Basin. In spite of numerous oceanographic expeditions to the Philippine Sea, including the two previous DSDP Legs 6 and 31 (Fischer, Heezen et al., 1971; Karig, Ingle et al., 1975), and even though the origins of inter-arc basins have been linked by various hypotheses to that of remnant island arcs (Karig, 1971, 1972, 1975a, and 1975b; Gill, 1976; Uyeda and Ben-Avraham, 1972; Hilde et al., 1977), very little hard data are available on inactive remnant arcs.
Resumo:
Detailed comparison of mineralogy, and major and trace geochemistry are presented for the modern Lau Basin spreading centers, the Sites 834-839 lavas, the modern Tonga-Kermadec arc volcanics, the northern Tongan boninites, and the Lau Ridge volcanics. The data clearly confirm the variations from near normal mid-ocean-ridge basalt (N-MORB) chemistries (e.g., Site 834, Central Lau Spreading Center) to strongly arc-like (e.g., Site 839, Valu Fa), the latter closely comparable to the modern arc volcanoes. Sites 835 and 836 and the East Lau Spreading Center represent transitional chemistries. Bulk compositions range from andesitic to basaltic, but lavas from Sites 834 and 836 and the Central Lau Spreading Center extend toward more silica-undersaturated compositions. The Valu Fa and modern Tonga-Kermadec arc lavas, in contrast, are dominated by basaltic andesites. The phenocryst and groundmass mineralogies show the strong arc-like affinities of the Site 839 lavas, which are also characterized by the existence of very magnesian olivines (up to Fo90-92) and Cr-rich spinels in Units 3 and 6, and highly anorthitic plagioclases in Units 2 and 9. The regional patterns of mineralogical and geochemical variations are interpreted in terms of two competing processes affecting the inferred magma sources: (1) mantle depletion processes, caused by previous melt extractions linked to backarc magmatism, and (2) enrichment in large-ion-lithophile elements, caused by a subduction contribution. A general trend of increasing depletion is inferred both eastward across the Lau Basin toward the modern arc, and northward along the Tongan (and Kermadec) Arc. Numerical modeling suggests that multistage magma extraction can explain the low abundances (relative to N-MORB) of elements such as Nb, Ta, and Ti, known to be characteristic of island arc magmas. It is further suggested that a subduction jump following prolonged slab rollback could account for the initiation of the Lau Basin opening, plausibly allowing a later influx of new mantle, as required by the recognition of a two-stage opening of the Lau Basin.
Resumo:
Dismembered ophiolitic rocks including abundant sheared, serpentinized peridotite (mostly harzburgite) and minor basalts, dolerites, gabbros, and altered metabasites (mainly altered amphibolite) were drilled at most of the sites on the upper to lower Middle America Trench landward slope off Guatemala during Leg 84 of the Deep Sea Drilling Project. These rocks show characteristic Cataclastic deformation with zeolite facies metamorphism and alteration after amphibolite and greenschist facies metamorphism. These features indicate that the rocks originated in mid-oceanic ridge, offridge, and possibly other areas including island arc areas and were metamorphosed under a high geothermal gradient at low pressure. They were then structurally deformed and mixed within a serpentinite melange. Such ophiolite melanges may have been emplaced onto the Trench landward slope area during the initiation of subduction of the Cocos Plate. The emplacement seems to be connected to that of the Nicoya Complex in Costa Rica. The slope cover from early Eocene to Recent shows no history of these metamorphic and deformational events, therefore the emplacement of the dismembered ophiolitic rocks occurred at least before the early Eocene. The dismembered ophiolite-based Trench landward slope off Guatemala is a newly documented style of subduction, which has also recently been found at the easternmost edge of the Philippine Sea Plate along the Izu-Mariana-Yap Trench landward slope.
Resumo:
Mantle peridotites drilled from the Izu-Bonin-Mariana forearc have unradiogenic 187Os/188Os ratios (0.1193 to 0.1273), which give Proterozoic model ages of 820 to 1230 million years ago. If these peridotites are residues from magmatism during the initiation of subduction 40 to 48 million years ago, then the mantle that melted was much more depleted in incompatible elements than the source of mid-ocean ridge basalts (MORB). This result indicates that osmium isotopes record information about ancient melting events in the convecting upper mantle not recorded by incompatible lithophile isotope tracers. Subduction zones may be a graveyard for ancient depleted mantle material, and portions of the convecting upper mantle may be less radiogenic in osmium isotopes than previously recognized.
Resumo:
Holes drilled into the volcanic and ultrabasic basement of the Izu-Ogasawara and Mariana forearc terranes during Leg 125 provide data on some of the earliest lithosphere created after the start of Eocene subduction in the Western Pacific. The volcanic basement contains three boninite series and one tholeiite series. (1) Eocene low-Ca boninite and low-Ca bronzite andesite pillow lavas and dikes dominate the lowermost part of the deep crustal section through the outer-arc high at Site 786. (2) Eocene intermediate-Ca boninite and its fractionation products (bronzite andesite, andesite, dacite, and rhyolite) make up the main part of the boninitic edifice at Site 786. (3) Early Oligocene intermediate-Ca to high-Ca boninite sills or dikes intrude the edifice and perhaps feed an uppermost breccia unit at Site 786. (4) Eocene or Early Oligocene tholeiitic andesite, dacite, and rhyolite form the uppermost part of the outer-arc high at Site 782. All four groups can be explained by remelting above a subduction zone of oceanic mantle lithosphere that has been depleted by its previous episode of partial melting at an ocean ridge. We estimate that the average boninite source had lost 10-15 wt% of melt at the ridge before undergoing further melting (5-10%) shortly after subduction started. The composition of the harzburgite (<2% clinopyroxene, Fo content of about 92%) indicates that it underwent a total of about 25% melting with respect to a fertile MORB mantle. The low concentration of Nb in the boninite indicates that the oceanic lithosphere prior to subduction was not enriched by any asthenospheric (OIB) component. The subduction component is characterized by (1) high Zr and Hf contents relative to Sm, Ti, Y, and middle-heavy REE, (2) light REE-enrichment, (3) low contents of Nb and Ta relative to Th, Rb, or La, (4) high contents of Na and Al, and (5) Pb isotopes on the Northern Hemisphere Reference Line. This component is unlike any subduction component from active arc volcanoes in the Izu-Mariana region or elsewhere. Modeling suggests that these characteristics fit a trondhjemitic melt from slab fusion in amphibolite facies. The resulting metasomatized mantle may have contained about 0.15 wt% water. The overall melting regime is constrained by experimental data to shallow depths and high temperatures (1250? C and 1.5 kb for an average boninite) of boninite segregation. We thus envisage that boninites were generated by decompression melting of a diapir of metasomatized residual MORB mantle leaving the harzburgites as the uppermost, most depleted residue from this second stage of melting. Thermal constraints require that both subducted lithosphere and overlying oceanic lithosphere of the mantle wedge be very young at the time of boninite genesis. This conclusion is consistent with models in which an active transform fault offsetting two ridge axes is placed under compression or transpression following the Eocene plate reorganization in the Pacific. Comparison between Leg 125 boninites and boninites and related rocks elsewhere in the Western Pacific highlights large regional differences in petrogenesis in terms of mantle mineralogy, degree of partial melting, composition of subduction components, and the nature of pre-subduction lithosphere. It is likely that, on a regional scale, the initiation of subduction involved subducted crust and lithospheric mantle wedge of a range of ages and compositions, as might be expected in this type of tectonic setting.
Resumo:
In order to study late Holocene changes in sediment supply into the northern Arabian Sea, a 5.3 m long gravity core was investigated by high-resolution geochemical and mineralogical techniques. The sediment core was recovered at a water depth of 956 m from the continental slope off Pakistan and covers a time span of 5 kyr. During the late Holocene source areas delivering material to the sampling site did, however, not change and were active throughout the year.
Resumo:
Drilling of the distal Newfoundland margin at Ocean Drilling Program Site 1277 recovered part of the transition between exhumed sub-continental mantle lithosphere and normal mid-ocean-ridge basalt (N-MORB) volcanism perhaps related to the initiation of seafloor spreading, which may have occurred near the Aptian/Albian boundary, coincident with the final separation of subcontinental mantle lithosphere. Subcontinental mantle lithosphere was recovered near the crest of a basement high, the Mauzy Ridge. This ridge lies near magnetic Anomaly M1 and is inferred to be of Barremian age. The recovered section is dominated by serpentinized spinel harzburgite, with subordinate dunite and minor gabbroic intrusives, and it includes inferred high-temperature ductile shear zones. The serpentinite is capped by foliated gabbro cataclasite that is interpreted as the product of a major seafloor extensional detachment. The serpentinized harzburgite beneath is highly depleted subcontinental mantle lithosphere that was exhumed to create new seafloor within the ocean-continent transition zone. After inferred removal of overlying brittle crust, the detachment was eroded, producing multiple mass flows that were dominated by clasts of serpentinite and gabbro in a lithoclastic and calcareous matrix. Basaltic lavas were erupted spasmodically, mainly as sheet flows, with subordinate lava breccia, hyaloclastite, and possible pillow lava. The sedimentary-volcanic succession and the exhumed mantle lithosphere experienced later high-angle extensional fracturing and probably faulting. Extensional fissures opened incrementally and were filled with silt-sized carbonate, basalt-derived clastic sediment, and hyaloclastite, forming neptunian dykes and geopetal structures. Chemical analysis of representative basalts for major elements and trace elements were made using a high-precision, high-accuracy X-ray fluorescence method (utilizing increased count times) and by whole-rock inductively coupled plasma-mass spectrometry that yielded additional evidence for rare earth elements. The analyses indicate N-MORB to slightly enriched compositions. The MORB was produced by relatively high degree melting of a fertile mantle source that differed strongly from the cored serpentinized peridotites. The basalts exhibit a distinct negative Nb anomaly on MORB-normalized plots that can be explained by prior extraction of melt from upper mantle that had previously been affected by subduction, possibly during closure of the Iapetus or Rheic oceans. In the proposed interpretation, mantle lithosphere was exhumed to the seafloor and experienced mass wasting to form serpentinite-rich mass flows. The interbedded MORB records the beginning of a transition to "normal" seafloor spreading. This interpretation takes into account drilling results from the Iberia-Galicia margin and the Jurassic Alps-Apennines.
Resumo:
New heat-flow values were obtained in the central Peru Trench area during site surveys and drilling of Ocean Drilling Program (ODP) Leg 112 by measuring temperatures with ordinary surface heat-flow probes and in the drill holes and by estimating from bottom-simulating reflectors resulting from gas hydrates. The values determined by these methods are consistent with each other within the limits of error. When combined with existing data, heat-flow distribution from the trench to the coast was delineated. Heat flow is lower than 40 mW/m**2 at the bottom of the trench and 40 to 50 mW/m**2 on the landward slope. The low heat flow at the trench bottom can be explained partly by a high sedimentation rate. Heat flow is variable about where the Mendana Fracture Zone meets the trench. This low heat flow might result from hydrothermal circulation in the fracture zone, which some scientists believe is a new propagating rift. On the landward slope, no significant difference in heat flow is recognized between the northern side and the southern side of the fracture zone, in spite of differences in the age of the subducting plate and the tectonic history. Heat flow on the landward slope may be slightly higher than that in most other subduction zones.
Resumo:
Twenty-six samples representing the wide range of lithologies (low- and intermediate-Ca boninites and bronzite andesites, high-Ca boninites, basaltic andesites-rhyolites) drilled during Leg 125 at Sites 782 and 786 on the Izu-Bonin outer-arc high have been analyzed for Sr, Nd, and Pb isotopes. Nd-Sr isotope covariations show that most samples follow a trend parallel to a line from Pacific MORB mantle (PMM) to Pacific Volcanogenic sediment (PVS) but displaced slightly toward more radiogenic Sr. Pb isotope covariations show that all the Eocene-Oligocene samples plot along the Northern Hemisphere Reference Line, indicating little or no Pb derived from subducted pelagic sediment in their source. Two young basaltic andesite clasts within sediment do have a pelagic sediment signature but this may have been gained by alteration rather than subduction. In all isotopic projections, the samples form consistent groupings: the tholeiites from Site 782 and Hole 786A plot closest to PMM, the boninites and related rocks from Sites 786B plot closest to PVS, and the boninite lavas from Hole 786A and late boninitic dikes from Hole 786B occupy an intermediate position. Isotope-trace element covariations indicate that these isotopic variations can be explained by a three-component mixing model. One component (A) has the isotopic signature of PMM but is depleted in the more incompatible elements. It is interpreted as representing suboceanic mantle lithosphere. A second component (B) is relatively radiogenic (epsilon-Nd = ca 4-6; 206Pb/204Pb = ca 19.0-19.3; epsilon-Sr = ca -10 to -6)). Its trace element pattern has, among other characteristics, a high Zr/Sm ratio, which distinguishes it from the ìnormalî fluid components associated with subduction and hotspot activity. There are insufficient data at present to tie down its origin: probably it was either derived from subducted lithosphere or volcanogenic sediment fused in amphibolite facies; or it represents an asthenospheric melt component that has been fractionated by interaction with amphibole-bearing mantle. The third component (C) is characterized by high contents of Sr and high epsilon-Sr values and is interpreted as a subducted fluid component. The mixing line on a diagram of Zr/Sr against epsilon-Sr suggests that component C may have enriched the lithosphere (component A) before component B. These components may also be present on a regional basis but, if so, may not have had uniform compositions. Only the boninitic series from nearby Chichijima would require an additional, pelagic sediment component. In general, these results are consistent with models of subduction of ridges and young lithosphere during the change from a ridge-transform to subduction geometry at the initiation of subduction in the Western Pacific.