227 resultados para STAMP
em Publishing Network for Geoscientific
Resumo:
Pliocene vegetation dynamics and climate variability in West Africa have been investigated through pollen and XRF-scanning records obtained from sediment cores of ODP Site 659 (18°N, 21°W). The comparison between total pollen accumulation rates and Ti/Ca ratios, which is strongly correlated with the dust input at the site, showed elevated aeolian transport of pollen during dusty periods. Comparison of the pollen records of ODP Site 659 and the nearby Site 658 resulted in a robust reconstruction of West African vegetation change since the Late Pliocene. Between 3.6 and 3.0 Ma the savannah in West Africa differed in composition from its modern counterpart and was richer in Asteraceae, in particular of the Tribus Cichorieae. Between 3.24 and 3.20 Ma a stable wet period is inferred from the Fe/K ratios, which could stand for a narrower and better specified mid-Pliocene (mid-Piacenzian) warm time slice. The northward extension of woodland and savannah, albeit fluctuating, was generally greater in the Pliocene. NE trade wind vigour increased intermittently around 2.7 and 2.6 Ma, and more or less permanently since 2.5 Ma, as inferred from increased pollen concentrations of trade wind indicators (Ephedra, Artemisia, Pinus). Our findings link the NE trade wind development with the intensification of the Northern Hemisphere glaciations (iNHG). Prior to the iNHG, little or no systematic relation could be found between sea surface temperatures of the North Atlantic with aridity and dust in West Africa.
Resumo:
Underwater georeferenced photo-transect survey was conducted on September 23 - 27, 2007 at different sections of the reef flat, reef crest and reef slope in Heron Reef. For this survey a snorkeler or diver swam over the bottom while taking photos of the benthos at a set height using a standard digital camera and towing a surface float GPS which was logging its track every five seconds. A standard digital compact camera was placed in an underwater housing and fitted with a 16 mm lens which provided a 1.0 m x 1.0 m footprint, at 0.5 m height above the benthos. Horizontal distance between photos was estimated by three fin kicks of the survey diver/snorkeler, which corresponded to a surface distance of approximately 2.0 - 4.0 m. The GPS was placed in a dry-bag and logged its position as it floated at the surface while being towed by the photographer. A total of 3,586 benthic photos were taken. A floating GPS setup connected to the swimmer/diver by a line enabled recording of coordinates of each benthic. Approximation of coordinates of each benthic photo was done based on the photo timestamp and GPS coordinate time stamp, using GPS Photo Link Software (www.geospatialexperts.com). Coordinates of each photo were interpolated by finding the gps coordinates that were logged at a set time before and after the photo was captured. Benthic or substrate cover data was derived from each photo by randomly placing 24 points over each image using the Coral Point Count excel program (Kohler and Gill, 2006). Each point was then assigned to 1 out of 80 cover types, which represented the benthic feature beneath it. Benthic cover composition summary of each photo scores was generated automatically using CPCE program. The resulting benthic cover data of each photo was linked to gps coordinates, saved as an ArcMap point shapefile, and projected to Universal Transverse Mercator WGS84 Zone 56 South.
Resumo:
The dataset shows the ice thickness over Wilkins Ice Shelf, Antarctic Peninsula derived from TanDEM-X Interferometry. The data has been acquired between June and August 2012. The TanDEM-X heights have been linked to CryoSAT-2 heights (V. Helm) from the respective time stamp. Elevations have been transformed from WGS84 ellipsoidal heights to the EGM2008 geoid. The ice shelf thickness was estimated assuming hydrostatic equilibrium and a mean ice density of 915 kg/m³.
Resumo:
Nutrient supply in the area off Northwest Africa is mainly regulated by two processes, coastal upwelling and deposition of Saharan dust. In the present study, both processes were analyzed and evaluated by different methods, including cross-correlation, multiple correlation, and event statistics, using remotely sensed proxies of the period from 2000 to 2008 to investigate their influence on the marine environment. The remotely sensed chlorophyll-a concentration was used as a proxy for the phytoplankton biomass stimulated by nutrient supply into the euphotic zone from deeper water layers and from the atmosphere. Satellite-derived alongshore wind stress and sea-surface temperature were applied as proxies for the strength and reflection of coastal upwelling processes. The westward wind and the dust component of the aerosol optical depth describe the transport direction of atmospheric dust and the atmospheric dust column load. Alongshore wind stress and induced upwelling processes were most significantly responsible for the surface chlorophyll-a variability, accounting for about 24% of the total variance, mainly in the winter and spring due to the strong north-easterly trade winds. The remotely sensed proxies allowed determination of time lags between biological response and its forcing processes. A delay of up to 16 days in the surface chlorophyll-a concentration due to the alongshore wind stress was determined in the northern winter and spring. Although input of atmospheric iron by dust storms can stimulate new phytoplankton production in the study area, only 5% of the surface chlorophyll-a variability could be ascribed to the dust component in the aerosol optical depth. All strong desert storms were identified by an event statistics in the time period from 2000 to 2008. The 57 strong storms were studied in relation to their biological response. Six events were clearly detected in which an increase of chlorophyll-a was caused by Saharan dust input and not by coastal upwelling processes. Time lags of <8 days, 8 days, and 16 days were determined. An increase in surface chlorophyll-a concentration of up to 2.4 mg m**3 after dust storms in which the dust component of the aerosol optical depth was up to 0.9 was observed.
Resumo:
The analysis of time-dependent data is an important problem in many application domains, and interactive visualization of time-series data can help in understanding patterns in large time series data. Many effective approaches already exist for visual analysis of univariate time series supporting tasks such as assessment of data quality, detection of outliers, or identification of periodically or frequently occurring patterns. However, much fewer approaches exist which support multivariate time series. The existence of multiple values per time stamp makes the analysis task per se harder, and existing visualization techniques often do not scale well. We introduce an approach for visual analysis of large multivariate time-dependent data, based on the idea of projecting multivariate measurements to a 2D display, visualizing the time dimension by trajectories. We use visual data aggregation metaphors based on grouping of similar data elements to scale with multivariate time series. Aggregation procedures can either be based on statistical properties of the data or on data clustering routines. Appropriately defined user controls allow to navigate and explore the data and interactively steer the parameters of the data aggregation to enhance data analysis. We present an implementation of our approach and apply it on a comprehensive data set from the field of earth bservation, demonstrating the applicability and usefulness of our approach.
Resumo:
We derive tropospheric column BrO during the ARCTAS and ARCPAC field campaigns in spring 2008 using retrievals of total column BrO from the satellite UV nadir sensors OMI and GOME-2 using a radiative transfer model and stratospheric column BrO from a photochemical simulation. We conduct a comprehensive comparison of satellite-derived tropospheric BrO column to aircraft in-situ observations of BrO and related species. The aircraft profiles reveal that tropospheric BrO, when present during April 2008, was distributed over a broad range of altitudes rather than being confined to the planetary boundary layer (PBL). Perturbations to the total column resulting from tropospheric BrO are the same magnitude as perturbations due to longitudinal variations in the stratospheric component, so proper accounting of the stratospheric signal is essential for accurate determination of satellite-derived tropospheric BrO. We find reasonably good agreement between satellite-derived tropospheric BrO and columns found using aircraft in-situ BrO profiles, particularly when satellite radiances were obtained over bright surfaces (albedo >0.7), for solar zenith angle <80° and clear sky conditions. The rapid activation of BrO due to surface processes (the bromine explosion) is apparent in both the OMI and GOME-2 based tropospheric columns. The wide orbital swath of OMI allows examination of the evolution of tropospheric BrO on about hourly time intervals near the pole. Low surface pressure, strong wind, and high PBL height are associated with an observed BrO activation event, supporting the notion of bromine activation by high winds over snow.
Resumo:
The track of the cruise, and the location of the different stations cover a large range of water masses, many of which take part in the exchange across the Greenland-Scotland Ridge, and of importance for the biogeochemical fluxes in the region. These water masses are of very different origins, which can be observed in the concentration of the different biogeochemical parameters. The concentrations are a result of the combination of the physical and biogeochemical environment in each formation region, and the processes acting on the water masses as they are transported away from the formation areas. The aim of the biogeochemistry measurements was to achieve a better understanding of the strength and variability of the biological carbon pump in the North Atlantic and Nordic Seas.