79 resultados para SPIRAL CT

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study deals with the mineralogical variability of siliceous and zeolitic sediments, porcellanites, and cherts at small intervals in the continuously cored sequence of Deep Sea Drilling Project Site 462. Skeletal opal is preserved down to a maximum burial depth of 390 meters (middle Eocene). Below this level, the tests are totally dissolved or replaced and filled by opal-CT, quartz, clinoptilolite, and calcite. Etching of opaline tests does not increase continously with deeper burial. Opal solution accompanied by a conspicuous formation of authigenic clinoptilolite has a local maximum in Core 16 (150 m). A causal relationship with the lower Miocene hiatus at this level is highly probable. Oligocene to Cenomanian sediments represent an intermediate stage of silica diagenesis: the opal-CT/quartz ratios of the silicified rocks are frequently greater than 1, and quartz filling pores or replacing foraminifer tests is more widespread than quartz which converted from an opal-CT precursor. As at other sites, there is a marked discontinuity of the transitions from biogenic opal via opal-CT to quartz with increasing depth of burial. Layers with unaltered opal-A alternate with porcellanite beds; the intensity of the opal-CT-to-quartz transformation changes very rapidly from horizon to horizon and obviously is not correlated with lithologic parameters. The silica for authigenic clinoptilolite was derived from biogenic opal and decaying volcanic components.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We experimentally and numerically investigated the generation of plumes from a local heat source (LHS) and studied the interaction of these plumes with cellular convective motion (CCM) in a rectangular cavity filled with silicon oil at a Prandtl number (Pr) of approximately two thousand. The LHS is generated using a 0.2-W green laser beam. A roll-type CCM is generated by vertically heating one side of the cavity. The CCM may lead to the formation of an unusual spiral convective plume that resembles a vertical Archimedes spiral. A similar plume is obtained in a direct numerical simulation. We discuss the physical mechanism for the formation of a spiral plume and the application of the results to mantle convection problems. We also estimate the Reynolds (Re) and Rayleigh (Ra) numbers and apply self-similarity theory to convection in the Earth's mantle. Spiral plumes can be used to interpret mantle tomography results over the last decade.