12 resultados para SOUTHERN APPALACHIAN FOREST
em Publishing Network for Geoscientific
Resumo:
The discovery of a neolithic pile field in the shallow water near the eastern shore of the Degersee confirmed earlier palynological and sedimentological studies stating that early man was active in the region since more than 6000 years. The already available off-site data were freshly assessed, completed by additional data from old and new cores and the interpretations revised. A common time scale for the off-site data and the on-site data was obtained by AMS dating of terrestrial macro remains of the neolithic section of off-site core De_I+De_H. The ages can thus be parallelled with AMS ages of construction timber on-site. Pollen analyses from all cores provide a further time scale. The continuously and densely sampled pollen profile of the profundal zone embracing the entire Late glacial and Holocene serves as a reference. From the Boreal onwards the relative ages are transformed by AMS ages and varve counts into calibrated and absolute. A transect cored close to the neolithic pile field across the lake marl-platform demonstrates its geological architecture in the shallow water since the Lateglacial. Studies of the microfabric of thin sections of drilled cores and of box cores from the excavations demonstrate that neolithic settlements now at 2-3,5 m water depth had been erected on lake marl freshly fallen dry, thus indicating earlier lake levels dropped by 1.5-2 m. The neolithic section of the highly resolved off-site profile in the lake=s profundal zone has laminated and calcareous zones alternating with massive ones. Assemblages of diatoms and concentrations of trace elements changing simultaneously characterise the calcareous sections as deposits of low lake levels that lasted between some 40 and more than 300 years. The ages of discovered lake shore dwellings fall into calcareous segments with low lake levels. From the end of the Upper Atlantic period (F VII) appear Secondary Forest Cycles in the beech forest, a man-made sequence of repeated vegetational development with an identical pattern: With a decrease of beech pollen appear pollen of grasses, herbs and cultural indicators. These are suppressed by the light demanding hazel and birch, those again by ash, and finally by the shade demanding beech forming a new pollen peak. Seven main Forest Cycles are identified In the upper Neolithic period each comprising some 250, 450 or 800 years. They are subdivided into subcycles that can be broken down by very dense sampling in even shorter cycles of decadal length. Farming settlers have caused minor patchy clearances of the beech-mixed-forest with the use of fire. The phases of clearance coincide with peaks of charcoal and low stands of the lake levels. The Secondary Forest Cycles and the continuous occurrence of charcoal prove a continued occupation of the region. Together with the repeated restoration of the beech climax forest they point to pulsating occupation probably associated with dynamic demography. The synchronism of the many palynological, sedimentological and archaeological data point to an external forcing as the climate that affects comprehensively all these proxies. The fluctuations of the activity of the sun as manifested in the residual d14C go largely along with the proxies. The initial clearances at the begin of the forest cycles are linked to low lake levels and negative values of d14C that point to dry and warm phases of a more continental climate type. The subcycles exist independent from climatic changes, indicating that early man acted largely independent from external forces.
Resumo:
Palaeoecological investigations in the larch forest-tundra ecotone in northern Siberia have the potential to reveal Holocene environmental variations, which likely have consequences for global climate change because of the strong high-latitude feedback mechanisms. A sediment core, collected from a small lake (radius ~100 m), was used to reconstruct the development of the lake and its catchment as well as vegetation and summer temperatures over the last 7100 calibrated years. A multi-proxy approach was taken including pollen and sedimentological analyses. Our data indicate a gradual replacement of open larch forests by tundra with scattered single trees as found today in the vicinity of the lake. An overall trend of cooling summer temperature from a ~2 °C warmer-than-present mid-Holocene summer temperatures until the establishment of modern conditions around 3000 years ago is reconstructed based on a regional pollen-climate transfer function. The inference of regional vegetation changes was compared to local changes in the lake's catchment. An initial small water depression occurred from 7100 to 6500 cal years BP. Afterwards, a small lake formed and deepened, probably due to thermokarst processes. Although the general trends of local and regional environmental change match, the lake catchment changes show higher variability. Furthermore, changes in the lake catchment slightly precede those in the regional vegetation. Both proxies highlight that marked environmental changes occurred in the Siberian forest-tundra ecotone over the course of the Holocene.
Resumo:
Palynological investigations of sediments from northern Bavaria (Rhön, Grabfeld, Lange Berge) reveal the Late Glacial and Postglacial history of the regional vegetation. The older sedirnents were found in the Rhön (Schwarzes Moor) and date back into the Bölling Period. At the end of that period pine spread into the Grabfeld. In both areas Lacher Tuff has been found. A radiocarbon date of 10,300 BP was found for the Late Glacial - Postglacial transition and one of 9300 BP for the Preboreal - Boreal transition. Hazel reached its highest values in the Rhön around 7,400 BP. During the Atlanticum a deciduous mixed oak forest covered the Rhön and Grabfeld regions. Beech dominated since the Subatlanticum. In the Lange Berge region, however, a mixed forest with Fagus, Picea, Pinus and Abies developed. In the Rhön first anthropogenic influence was found during the Latene Period. The boundary between zone IX and X has been dated at 820 A.D., and the start of extensive forest clearances at 1000 A. D. A culmination of landuse was found for the Medieval Period. At the end of that period however the Rhön was deserted. New forest clearances started around 1500 A.D., but were interrupted by the 'Thirty Years War'. Afterwards the Rhön got its present appearance.