4 resultados para SIZE-EXCLUSION CHROMATOGRAPHY
em Publishing Network for Geoscientific
Resumo:
Samples from a pristine raised peat bog runoff in Austria, the Tannermoor creek, were analysed for their iron linked to natural organic matter (NOM) content. Dissolved organic carbon < 0.45 µm (DOC) was 41 to 64 mg/L, iron 4.4 to 5.5 mg/L. Samples were analysed applying asymmetric field flow fractionation (AsFlFFF) coupled to UV-Vis absorption, fluorescence and inductively coupled plasma mass spectrometry (ICP-MS). The samples showed an iron peak associated with the NOM peak, one sample exhibiting a second peak of iron independent from the NOM peak. As highland peat bogs with similar climatic conditions and vegetation to the Tanner Moor are found throughout the world, including areas adjacent to the sea, we examined the behaviour of NOM and iron in samples brought to euhaline (35 per mil) conditions with artificial sea salt. The enhanced ionic strength reduced NOM by 53% and iron by 82%. Size exclusion chromatography (SEC) of the samples at sea-like salinity revealed two major fractions of NOM associated with different iron concentrations. The larger one, eluting sharply after the upper exclusion limits of 4000-5000 g/mol, seems to be most important for iron chelating. The results outline the global importance of sub-mountainous and mountainous raised peat bogs as a source of iron chelators to the marine environment at sites where such peat bogs release their run-offs into the sea.
Resumo:
For the first time, short-chain organic acids are described in interstitial waters from sediments and lithified materials in a backarc setting. Organic acids in interstitial waters from the Tonga forearc region were also analyzed and compared with previous organic acid analyses from the Mariana and Bonin forearc interstitial waters. In the Tonga backarc setting, propionate typically dominates the organic acid assemblage, and organic acids are a consistent feature of these interstitial waters. The persistent presence of ammonia and the dominance of propionate over formate in the backarc interstitial waters suggest that the organic acids in this setting have their origin in reductive deamination of amino acids derived from sedimentary proteinaceous material. The organic acid assemblage revealed in the samples from Hole 841B in the Tonga forearc are similar to the organic acid assemblage detected in the Mariana forearc, that is, formate dominates the assemblage over acetate or propionate. These forearc organic acid assemblages may both have formed by a similar mechanism.
Resumo:
We quantified pigment biomarkers by high performance liquid chromatography (HPLC) to obtain a broad taxonomic classification of microphytobenthos (MPB) (i.e. identification of dominant taxa). Three replicate sediment cores were collected at 0, 50 and 100 m along transects 5-9 in Heron Reef lagoon (n=15) (Fig. 1). Transects 1-4 could not be processed because the means to have the samples analysed by HPLC were not available at the time of field data collection. Cores were stored frozen and scrapes taken from the top of each one and placed in cryovials immersed in dry ice. Samples were sent to the laboratory (CSIRO Marine and Atmospheric Research, Hobart, Australia) where pigments were extracted with 100% acetone during fifteen hours at 4°C after vortex mixing (30 seconds) and sonication (15 minutes). Samples were then centrifuged and filtered prior to the analysis of pigment composition with a Waters - Alliance HPLC system equipped with a photo-diode array detector. Pigments were separated using a Zorbax Eclipse XDB-C8 stainless steel 150 mm x 4.6 mm ID column with 3.5 µm particle size (Agilent Technologies) and a binary gradient system with an elevated column temperature following a modified version of the Van Heukelem and Thomas (2001) method. The separated pigments were detected at 436 nm and identified against standard spectra using Waters Empower software. Standards for HPLC system calibration were obtained from Sigma (USA) and DHI (Denmark).
Resumo:
Present theories of deep-sea community organization recognize the importance of small-scale biological disturbances, originated partly from the activities of epibenthic megafaunal organisms, in maintaining high benthic biodiversity in the deep sea. However, due to technical difficulties, in situ experimental studies to test hypotheses in the deep sea are lacking. The objective of the present study was to evaluate the potential of cages as tools for studying the importance of epibenthic megafauna for deep-sea benthic communities. Using the deep-diving Remotely Operated Vehicle (ROV) "VICTOR 6000", six experimental cages were deployed at the sea floor at 2500 m water depth and sampled after 2 years (2y) and 4 years (4y) for a variety of sediment parameters in order to test for caging artefacts. Photo and video footage from both experiments showed that the cages were efficient at excluding the targeted fauna. The cage also proved to be appropriate to deep-sea studies considering the fact that there was no fouling on the cages and no evidence of any organism establishing residence on or adjacent to it. Environmental changes inside the cages were dependent on the experimental period analysed. In the 4y experiment, chlorophyll a concentrations were higher in the uppermost centimeter of sediment inside cages whereas in the 2y experiment, it did not differ between inside and outside. Although the cages caused some changes to the sedimentary regime, they are relatively minor compared to similar studies in shallow water. The only parameter that was significantly higher under cages at both experiments was the concentration of phaeopigments. Since the epibenthic megafauna at our study site can potentially affect phytodetritus distribution and availability at the seafloor (e.g. via consumption, disaggregation and burial), we suggest that their exclusion was, at least in part, responsible for the increases in pigment concentrations. Cages might be suitable tools to study the long-term effects of disturbances caused by megafaunal organisms on the diversity and community structure of smaller-sized organisms in the deep sea, although further work employing partial cage controls, greater replication, and evaluating faunal components will be essential to unequivocally establish their utility.