3 resultados para SINGLE-CRYSTAL X-RAY DIFFRACTOMETRY

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study reports the first crystal chemical database resulting from a detailed structural investigation of trioctahedral micas found in xenolithic ejecta produced during the AD 1631, 1872 and 1944 eruptions, three explosive episodes of recent volcanic period of Vesuvius volcano (Southern Italy). Three xenolith types were selected: metamorphic/metasomatic skarns, pyrometamorphic/hydrothermally altered nodules and mafic cumulates. They are related to different magma chemistry and effusive styles: from sub-plinian and most evolved (AD 1631 eruption) to violent strombolian with medium evolution degree (AD 1872 eruption) to vulcanian-effusive, least evolved (AD 1944 eruption) event, respectively. Both xenoliths and micas were investigated employing multiple techniques: the xenoliths were characterized by X-ray fluorescence, inductively-coupled plasma-mass spectrometry, optical microscopy, X-ray powder diffraction, and quantitative energy-dispersive microanalysis; the micas were studied by electron probe microanalysis and single crystal X-ray diffraction. The mica-bearing xenoliths show variable texture and mineralogical assemblage, clearly related to their different origin. Based on the major oxide chemistry, only one xenolithic sample falls in the skarn compositional field from the Somma-Vesuvius literature, some fall close to the skarns and cumulate fields, others plot close to the syenite/foidolite/essexite field. A subgroup of the selected ejecta does not fall or approach any of the compositional fields. Trace and rare earth element patterns show some petrological affinity between studied xenoliths and erupted magmas with typical Eu, Ta and Nb negative anomalies. Strongly depleted patterns were detected for the 1631 metamorphic/metasomatic skarns xenoliths. Three distinct mica groups were distinguished: 1) Mg-, Al-rich, low Ti-bearing, low to moderate F-bearing varieties (1631 xenolith), 2) Al-moderate, F- and Mg-rich, Ti-, Fe-poor varieties (1872 xenolith), and 3) Al-, Ti- and Fe-rich, F-poor phases (1944 xenolith). All the analysed mica crystals are 1M polytypes with the expected space group C2/m. Micas from xenoliths of the 1631 Vesuvius eruption are phlogopites characterized by a combination of low extent of oxy-type and variable extent OH-F-substitutions, as testified by the range of F concentration (from ~ 0.20 to 0.80 apfu). Micas from xenoliths of the 1872 Vesuvius eruption exhibit structural peculiarities typical of fluorophlogopites, i.e. OH-F-substitution is predominant. Micas from the xenolith of the 1944 Vesuvius eruption display features typical of oxy-substituted micas. The variability of the crystal chemical features of the studied micas are consistent with the remarkable variation of their host rocks. Micas from 1631 nodules are related to metasomatic, skarn-type environment, deriving from the metamorphosed wall-rocks hosting the magma reservoir. The fluorophlogopites from the 1872 xenoliths testify for strongly dehydrated environmental conditions compared to those of the 1631 and 1944 hosts. Finally, magma storage condition at depth, associated to a decreasing aH2O may have promoted major oxy-type substitutions in 1944 biotites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fossil floras described by Dieter MAI and Harald WALTHER are invaluable for understanding the past plant diversity in Europe, and provide important information on the occurrence of taxa in the fossil record that is critical for evolutionary studies. Among the taxa they recognized were seeds assigned to the extant genus Alpinia ROXB. (Zingiberaceae, Zingiberales). We reinvestigated 28 specimens that were assigned to Alpinia arnensis (CHANDLER) MAI, Alpinia cf. arnensis, and Alpinia bivascularis MAI from the Ypresian (lower Eocene) of the UK, upper Eocene of Germany, and lower Miocene of Germany using non-destructive synchrotron-based X-ray tomography to reveal internal anatomy. None of the samples studied show an anatomy consistent with extant Alpinia or even Zingiberales. The fossils lack the globose shape, often striate external surface, seed coat structure, operculum, and micropylar collar seen in all Alpinia, and lack the chalazal chamber seen in many Alpinia species. Two specimens from the lower Miocene of Germany showed the structure of fruits of Caricoidea CHANDLER (Cyperaceae) with a single-layered exocarp, thick mesocarp, and sclerified endocarp. The other specimens are recognized as Carpolithes albolutum nom. nov. (incertae sedis) from the Ypresian of the UK, C. phoenixnordensis sp. nov. (incertae sedis) from the upper Eocene of Germany, C. bivascularis comb. nov. (incertae sedis) from the lower Miocene of Germany as well as indeterminate tegmens from the lower Miocene of Germany. This reinvestigation demonstrates that there is, as yet, no confirmed fossil record for the extant genus Alpinia. Furthermore, at least four different taxa are recognized from what had been two extinct species, enhancing our understanding of these important European Cenozoic carpofloras.