618 resultados para SHORTWAVE IRRADIANCE

em Publishing Network for Geoscientific


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Depth-integrated in situ rates were calculated for each environment as a function of the available photosynthetically active radiation (PAR). Irradiance profiles were calculated for each environment (sea ice, melt pond, water under the ice and open water) from the daily average incoming solar shortwave irradiance measured by a pyranometer (Kipp & Zonen, Delft, Netherland) mounted on the ship. We used light attenuation coefficients of 10 m**-1 for snow, 1.5 m**-1 for sea ice (Perovich, 1996) and 0.1 m**-1 for Atlantic-influenced Arctic seawater, based on literature values and observations during the cruise. Planar irradiance was transformed to scalar irradiance according to Ehn and Mundy (2013) and Katlein et al., (2014). Water column production was integrated over the euphotic zone (1% of incoming irradiance) and sea ice production over the ice core thickness. Melt pond coverage and sea ice concentration were taken into account when calculating the total primary production per area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An integrated instrument package for measuring and understanding the surface radiation budget of sea ice is presented, along with results from its first deployment. The setup simultaneously measures broadband fluxes of upwelling and downwelling terrestrial and solar radiation (four components separately), spectral fluxes of incident and reflected solar radiation, and supporting data such as air temperature and humidity, surface temperature, and location (GPS), in addition to photographing the sky and observed surface during each measurement. The instruments are mounted on a small sled, allowing measurements of the radiation budget to be made at many locations in the study area to see the effect of small-scale surface processes on the large-scale radiation budget. Such observations have many applications, from calibration and validation of remote sensing products to improving our understanding of surface processes that affect atmosphere-snow-ice interactions and drive feedbacks, ultimately leading to the potential to improve climate modelling of ice-covered regions of the ocean. The photographs, spectral data, and other observations allow for improved analysis of the broadband data. An example of this is shown by using the observations made during a partly cloudy day, which show erratic variations due to passing clouds, and creating a careful estimate of what the radiation budget along the observed line would have been under uniform sky conditions, clear or overcast. Other data from the setup's first deployment, in June 2011 on fast ice near Point Barrow, Alaska, are also shown; these illustrate the rapid changes of the radiation budget during a cold period that led to refreezing and new snow well into the melt season.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: