8 resultados para SHANGHAI
em Publishing Network for Geoscientific
Resumo:
Canonical correspondence analysis has been used to analyze and to visualize the relationships between the main species and selected environmental variables in a study of diatoms from surface sediment samples in Chinese inshore waters. The result shows that the diatom distribution in Chinese inshore waters is closely correlated with the environmental variables and that the measured environmental variables account for the major changes of the diatom composition. Winter sea-surface temperature (WST), winter sea-surface salinity (WSS), water depth and summer sea-surface salinity (SSS) play an important role for the diatom distribution. Among the environmental factors, winter sea-surface temperature is the most important, controlling the distribution of diatoms in the surface sediments in Chinese inshore waters, and therefore, it may be potentially reconstructed in palaeoceanographic studies. Three diatom assemblages are distinguished, representing environments with different hydrological characteristics. The temperate-water diatom assemblage may be used as an indicator of the coastal circulation system of Bohai Sea and Yellow Sea. While the warm-temperate water diatom assemblage is closely related to Shanghai-Zhejiang-Fujian coastal currents and Northern Bay coastal currents of South China Sea. The deep water diatom assemblage is a response to that the waters are less controlled by coastal currents, but are more influenced by open sea currents, such as Kuroshio.
Resumo:
Clay mineral assemblages at ODP Site 1146 in the northern South China Sea are used to investigate sediment source and transport processes and to evaluate the evolution of the East Asian monsoon over the past 2 Myr. Clay minerals consist mainly of illite (22-43%) and smectite (12-48%), with associated chlorite (10-30%), kaolinite (2-18%), and random mixed-layer clays (5-22%). Hydrodynamic and mineralogical studies indicate that illite and chlorite sources include Taiwan and the Yangtze River, that smectite and mixed-layer clays originate predominantly from Luzon and Indonesia, and that kaolinite is primarily derived from the Pearl River. Mineral assemblages indicate strong glacial-interglacial cyclicity, with high illite, chlorite, and kaolinite content during glacials and high smectite and mixed-layer clay content during interglacials. During interglacials, summer enhanced monsoon (southwesterly) currents transport more smectite and mixed-layer clays to Site 1146 whereas during glacials, enhanced winter monsoon (northerly) currents transport more illite and chlorite from Taiwan and the Yangtze River. The ratio (smectite+mixed layers)/(illite+chlorite) was adopted as a proxy for East Asian monsoon variability. Higher ratios indicate strengthened summer-monsoon winds and weakened winter-monsoon winds during interglacials. In contrast, lower ratios indicate a strongly intensified winter monsoon and weakened summer monsoon during glacials. Spectral analysis indicates the mineral ratio was dominantly forced by monsoon variability prior to the development of large-scale glaciation at 1.2 Myr and by both monsoon variability and the effects of changing sea level in the interval 1.2 Myr to present.