3 resultados para SDS - PAGE
em Publishing Network for Geoscientific
Resumo:
Temora longicornis, a dominant calanoid copepod species in the North Sea, is characterised by low lipid reserves and high biomass turnover rates. To survive and reproduce successfully, this species needs continuous food supply and thus requires a highly flexible digestive system to exploit various food sources. Information on the capacity of digestive enzymes is scarce and therefore the aim of our study was to investigate the enzymatic capability to respond to quickly changing nutritional conditions. We conducted two feeding experiments with female T. longicornis from the southern North Sea off Helgoland. In the first experiment in 2005, we tested how digestive enzyme activities and enzyme patterns as revealed by substrate SDS-PAGE (sodium dodecylsulfate polyacrylamide gel electrophoresis) responded to changes in food composition. Females were incubated for three days fed ad libitum with either the heterotrophic dinoflagellate Oxyrrhis marina or the diatom Thalassiosira weissflogii. At the beginning and at the end of the experiment, copepods were deep-frozen for analyses. The lipolytic enzyme activity did not change over the course of the experiment but the enzyme patterns did, indicating a distinct diet-induced response. In a second experiment in 2008, we therefore focused on the enzyme patterns, testing how fast changes occur and whether feeding on the same algal species leads to similar patterns. In this experiment, we kept the females for 4 days at surplus food while changing the algal food species daily. At day 1, copepods were offered O. marina. On day 2, females received the cryptophycean Rhodomonas baltica followed by T. weissflogii on day 3. On day 4 copepods were again fed with O. marina. Each day, copepods were frozen for analysis by means of substrate SDS-PAGE. This showed that within 24 h new digestive enzymes appeared on the electrophoresis gels while others disappeared with the introduction of a new food species, and that the patterns were similar on day 1 and 4, when females were fed with O. marina. In addition, we monitored the fatty acid compositions of the copepods, and this indicated that specific algal fatty acids were quickly incorporated. With such short time lags between substrate availability and enzyme response, T. longicornis can successfully exploit short-term food sources and is thus well adapted to changes in food availability, as they often occur in its natural environment due seasonal variations in phyto- and microzooplankton distribution.
Resumo:
Two types of deep-sea dredges are currently under development for the mining of the manganese nodules, a deep-sea hydraulic dredge and a mechanical cable-bucket system. Both systems offer some advantages with the hydraulic system appearing to be advantageous in themining of a specific deposit for which it is designed while the cable-bucket system appears to be somewhat more flexible in working in a variety of deposits, topographic environments, and water depths. Environmental studies conducted in conjunction with deep-sea tests of the two types of mining systems currently indicate that substantially no environmental damage will be done in the mining of the deep-sea nodules. Because of the nature of the deposits and the way in which they can be mined, the manganese nodules appear to be a relatively pollution free and energy-saving source of a number of industrially important metals.
Resumo:
Manganese nodules containing up to 22 percent manganese oxide were found in Green Bay and the western and northern parts of Lake Michigan. The chemical composition of these nodules resembles that of shallow-water lacustrine and marine nodules. The manganese content of interstitial water is in some places enriched as much as 4000 times over that of lake water.