9 resultados para S. Maria in Aracoeli (Church : Rome, Italy)

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chironomid headcapsules were used to reconstruct late glacial and early-Holocene summer temperatures at Lago Piccolo di Avigliana (LPA). Two training sets (northern Sweden, North America) were used to infer temperatures. The reconstructed patterns of temperature change agreed well with the GRIP and NGRIP d18O records. Inferred temperatures were high during the Bølling (ca 19 °C), slowly decreased to ca 17.5 °C during the Allerød, reached lowest temperatures (ca 16 °C) during the Younger Dryas, and increased to ca. 18.5 °C during the Preboreal. The amplitudes of change at climate transitions (i.e. Oldest Dryas/Bølling: 3 °C, Allerød/Younger Dryas: 1.5 °C, and Younger Dryas/Preboreal: 2.5 °C) were smaller than in the northern Alps but similar to those recorded at another site in northeastern Italy. Our results suggest that (1) Allerød temperatures were higher in the southern Alps and (2) higher during the Preboreal (1 °C) than during the Allerød. These differences might provide an explanation for the different responses of terrestrial-vegetation to late glacial and early-Holocene climatic changes in the two regions. Other sites on both sides of the Alps should be studied to confirm these two hypotheses.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The atmospheric partial pressure of carbon dioxide (pCO2) will almost certainly be double that of pre-industrial levels by 2100 and will be considerably higher than at any time during the past few million years1. The oceans are a principal sink for anthropogenic CO2 where it is estimated to have caused a 30% increase in the concentration of H+ in ocean surface waters since the early 1900s and may lead to a drop in seawater pH of up to 0.5 units by 2100. Our understanding of how increased ocean acidity may affect marine ecosystems is at present very limited as almost all studies have been in vitro, short-term, rapid perturbation experiments on isolated elements of the ecosystem4, 5. Here we show the effects of acidification on benthic ecosystems at shallow coastal sites where volcanic CO2 vents lower the pH of the water column. Along gradients of normal pH (8.1-8.2) to lowered pH (mean 7.8-7.9, minimum 7.4-7.5), typical rocky shore communities with abundant calcareous organisms shifted to communities lacking scleractinian corals with significant reductions in sea urchin and coralline algal abundance. To our knowledge, this is the first ecosystem-scale validation of predictions that these important groups of organisms are susceptible to elevated amounts of pCO2. Sea-grass production was highest in an area at mean pH 7.6 (1,827 µatm pCO2) where coralline algal biomass was significantly reduced and gastropod shells were dissolving due to periods of carbonate sub-saturation. The species populating the vent sites comprise a suite of organisms that are resilient to naturally high concentrations of pCO2 and indicate that ocean acidification may benefit highly invasive non-native algal species. Our results provide the first in situ insights into how shallow water marine communities might change when susceptible organisms are removed owing to ocean acidification.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Ocean acidification (OA) is likely to exert selective pressure on natural populations. Our ability to predict which marine species will adapt to OA, and what underlies this adaptive potential, are of high conservation and resource management priority. Using a naturally low pH vent site in the Mediterranean Sea (Castello Aragonese, Ischia) mirroring projected future OA conditions, we carried out a reciprocal transplant experiment to investigate the relative importance of phenotypic plasticity and local adaptation in two populations of the sessile, calcifying polychaete /Simplaria /sp. (Annelida, Serpulidae, Spirorbinae): one residing in low pH and the other from a nearby ambient (i.e. high) pH site. We measured a suite of fitness related traits (i.e. survival, reproductive output, maturation, population growth) and tube growth rates in laboratory-bred F2 generation individuals from both populations reciprocally transplanted back into both ambient and low pH /in situ/ habitats. Both populations showed lower expression in all traits, but increased tube growth rates, when exposed to low pH compared to high pH conditions, regardless of their site of origin suggesting that local adaptation to low pH conditions has not occurred. We also found comparable levels of plasticity in the two populations investigated, suggesting no influence of long-term exposure to low pH on the ability of populations to adjust their phenotype. Despite high variation in trait values among sites and the relatively extreme conditions at sites close to the vents (pH < 7.36), response trends were consistent across traits. Hence, our data suggest that, for /Simplaria /and possibly other calcifiers, neither local adaptations nor sufficient phenotypic plasticity levels appear to suffice in order to compensate for the negative impacts of OA on long-term survival. Our work also underlines the utility of field experiments in natural environments subjected to high level of /p/CO_2 for elucidating the potential for adaptation to future scenarios of OA.