46 resultados para Rousseau, Jean Jacques, 1712-1778

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Collisional and post-collisional volcanic rocks in the Ulubey (Ordu) area at the western edge of the Eastern Pontide Tertiary Volcanic Province (EPTVP) in NE Turkey are divided into four suites; Middle Eocene (49.4-44.6 Ma) aged Andesite-Trachyandesite (AT), Trachyandesite-Trachydacite-Rhyolite (TTR), Trachydacite-Dacite (TD) suites, and Middle Miocene (15.1 Ma) aged Trachybasalt (TB) suite. Local stratigraphy in the Ulubey area starts with shallow marine environment sediments of the Paleocene-Eocene time and then continues extensively with sub-aerial andesitic to rhyolitic and rare basaltic volcanism during Eocene and Miocene time, respectively. Petrographically, the volcanic rocks are composed primarily of andesites/trachyandesites, with minor trachydacites/rhyolites, basalts/trachybasalts and pyroclastics, and show porphyric, hyalo-microlitic porphyric and rarely glomeroporphyric, intersertal, intergranular, fluidal and sieve textures. The Ulubey (Ordu) volcanic rocks indicate magma evolution from tholeiitic-alkaline to calc-alkaline with medium-K contents. Primitive mantle normalized trace element and chondrite normalized rare earth element (REE) patterns show that the volcanic rocks have moderate light rare earth element (LREE)/heavy rare earth element (HREE) ratios relative to E-Type MORB and depletion in Nb, Ta and Ti. High Th/Yb ratios indicate parental magma(s) derived from an enriched source formed by mixing of slab and asthenospheric melts previously modified by fluids and sediments from a subduction zone. All of the volcanic rocks share similar incompatible element ratios (e.g., La/Sm, Zr/Nb, La/Nb) and chondrite-normalized REE patterns, indicating that the basic to acidic rocks originated from the same source. The volcanic rocks were produced by the slab dehydration-induced melting of an existing metasomatized mantle source, and the fluids from the slab dehydration introduced significant large ion lithophile element (LILE) and LREE to the source, masking its inherent HFSE-enriched characteristics. The initial 87Sr/86Sr (0.7044-0.7050) and eNd (-0.3 to +3.4) ratios of the volcanics suggest that they originated from an enriched lithospheric mantle source with low Sm/Nd ratios. Integration of the geochemical, petrological and isotopical with regional and local geological data suggest that the Tertiary volcanic rocks from the Ulubey (Ordu) area were derived from an enriched mantle, which had been previously metasomatized by fluids derived from subducted slab during Eocene to Miocene in collisional and post-collisional extension-related geodynamic setting following Late Mesozoic continental collision between the Eurasian plate and the Tauride-Anatolide platform.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The isotopic and micropaleontological deglacial records of three deep-sea cores from 44°S to 55°S have been dated by accelerator mass spectrometry. The available records did not allow accurate dating of the initiation of the deglaciation. By 13,000 years B.P., sea surface temperatures reached values similar to the present values. A cool oscillation abruptly interrupted this warm phase between 12,000 and 11,000 years B.P. Initiation of this cooling therefore preceded the northern hemisphere Younger Dryas by approximately 1000 years. Complete warming was reached by 10,000 years B.P., more or less synchronous with the northeast Atlantic Ocean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high-resolution sedimentological and geochemical study was performed on a 20 m long core from the alpine Lake Anterne (2063 m a.s.l., NW French Alps) spanning the last 10 ka. Sedimentation is mainly of minerogenic origin. The organic matter quantity (TOC%) as well as its quality (hydrogen (HI) and oxygen (OI) indices) both indicate the progressive onset and subsequent stabilization of vegetation cover in the catchment from 9950 to 5550 cal. BP. During this phase, the pedogenic process of carbonate dissolution is marked by a decrease in the calcium content in the sediment record. Between 7850 and 5550 cal. BP, very low manganese concentrations suggest anoxic conditions in the bottom-water of Lake Anterne. These are caused by a relatively high organic matter (terrestrial and lacustrine) content, a low flood frequency and longer summer stratification triggered by warmer conditions. From 5550 cal. BP, a decrease in TOC, stabilization of HI and higher sedimentation rates together reflect increased erosion rates of leptosols and developed soils, probably due to a colder and wetter climate. Then, three periods of important soil destabilization are marked by an increased frequency and thickness of flood deposits during the Bronze Age and by increases in topsoil erosion relative to leptosols (HI increases) during the late Iron Age/Roman period and the Medieval periods. These periods are also characterized by higher sedimentation rates. According to palynological data, human impact (deforestation and/or pasturing activity) probably triggered these periods of increased soil erosion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mineralogical and H, O, Sr, and Nd isotope compositions have been analyzed on a set of representative samples from the 17-m.y. section in ODP Leg 116 Holes 717C and 718C. Based on the mineralogical composition of the fraction <2 µm together with the lithogenic-biogenic composition of the fraction >63 µm, the whole section can be subdivided into three major periods of sedimentation. Between 17.1 and 6 m.y., and between 0.8 m.y. to present, the sediments are characterized by sandy and silty turbiditic inputs with a high proportion of minerals derived from a gneissic source without alteration. In the fraction <2 µm, illite and chlorite are dominant over smectite and kaolinite. The granulometric fraction >63 µm contains quartz, muscovite, biotite, chlorite, and feldspars. The 6-to 0.8-m.y. period is represented by an alternation of sandy/silty horizons, muds, and calcareous muds rich in smectite, and kaolinite (50% to 85% of the fraction <2 µm) and bioclastic material. The presence of smectite and kaolinite, as well as the 18O/16O and the 87Sr/86Sr ratios of the fraction <2 µm, imply an evolution in a soil environment and exchanges with meteoric ground water. The ranges of isotopic compositions are limited throughout the section: d18O quartz = 11.7 to 13.3 per mil, 87Sr/86Sr = 0.733 to 0.760 and epsilon-Nd (0) = -17.4 to -13.8. These values are within those of the High Himalaya Crystalline series, and they are considered to reflect this source region. The data imply that, since 17 Ma, this formation has supplied the major part of the eroded material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A set of numerical equations is developed to estimate past sea surface temperatures (SST) from fossil Antarctic diatoms. These equations take into account both the biogeographic distribution and experimentally derived silica dissolution. The data represent a revision and expansion of a floral data base used previously and includes samples resulting from progressive opal dissolution experiments. Factor analysis of 166 samples (124 Holocene core top and 42 artificial samples) resolved four factors. Three of these factors depend on the water mass distribution (one Subantarctic and two Antarctic assemblages); factor 4 corresponds to a 'dissolution assemblage'. Inclusion of this factor in the data analysis minimizes the effect of opal dissolution on the assemblages and gives accurate estimates of SST over a wide range of biosiliceous dissolution. A transfer function (DTF 166/34/4) is derived from the distribution of these factors versus summer SST. Its standard error is +/- 1°C in the -1 to +10 °C summer temperature range. This transfer function is used to estimate SST changes in two southern ocean cores (43°S and 55°S) which cover the last climatic cycle. The time scale is derived from the changes in foraminiferal oxygen and carbon isotopic ratios. The reconstructed SST records present strong analogies with the air temperature record over Antarctica at the Vostok site, derived from changes in the isotopic ratio of the ice. This similarity may be used to compare the oceanic isotope stratigraphy and the Vostok time scale derived from ice flow model. The oceanic time scale, if taken at face value, would indicate that large changes in ice accumulation rates occurred between warm and cold periods.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrographical changes of the southern Indian Ocean over the last 230 kyr, is reconstructed using a 17-m-long sediment core (MD 88 770; 46°01'S 96°28'E, 3290m). The oxygen and carbon isotopic composition of planktonic (N. pachyderma sinistra and G. bulloides) and benthic (Cibicidoides wuellerstorfi, Epistominella exigua, and Melonis barleeanum) foraminifera have been analysed. Changes in sea surface temperatures (SST) are calculated using diatom and foraminiferal transfer functions. A new core top calibration for the Southern Ocean allows an extension of the method developed in the North Atlantic to estimate paleosalinities (Duplessy et al., 1991). The age scale is built using accelerator mass spectrometry (AMS) 14C dating of N. pachyderma s. for the last 35 kyr, and an astronomical age scale beyond. Changes in surface temperature and salinity clearly lead (by 3 to 7 kyr) deep water variations. Thus changes in deep water circulation are not the cause of the early response of the surface Southern Ocean to climatic changes. We suggest that the early warming and cooling of the Southern Ocean result from at least two processes acting in different orbital bands and latitudes: (1) seasonality modulated by obliquity affects the high-latitude ocean surface albedo (sea ice coverage) and heat transfer to and from the atmosphere; (2) low-latitude insolation modulated by precession influences directly the atmosphere dynamic and related precipitation/ evaporation changes, which may significantly change heat transfer to the high southern latitudes, through their control on latitudinal distribution of the major frontal zones and on the conditions of intermediate and deep water formation.