905 resultados para Ross Ice Shelf

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

While modern sampling techniques, such as autonomous underwater vehicles, are increasing our knowledge of the fauna beneath Antarctic sea ice of only a few meters in depth, greater sampling difficulties mean that little is known about the marine life underneath Antarctic ice shelves over 100 m thick. In this study, we present underwater images showing the underside of an Antarctic ice shelf covered by aggregated invertebrate communities, most likely cnidarians and isopods. These images, taken at an average depth of 145 m, were obtained with a digital still camera system attached to Weddell seals Leptonychotes weddellii foraging just beneath the ice shelf. Our observations indicate that, similar to the sea floor, ice shelves serve as an important habitat for a remarkable amount of marine invertebrate fauna in Antarctica.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accumulation rates in the eastern part of Ronne Ice Shelf were determined by isotopic stratigraphy (18O). The samples were taken from snow-pits dug during the Filchner I and II operations in 1984 and 1986. In general, the accumulation rate decreases towards the south; the greatest decrease, from 21.3 to 13.3 g/cm**2/a, was observed between Filchner Station and measuring point 341, sited 270 km up-stream of the ice edge. The d18O values of the near-surface layers vary between -25 and -29 per mil. The 18O content in the more southerly part is progressively depleted in the direction of Möllereisstrom, paralleling a decrease in the accumulation rate. Near the ice edge the 18O content decreases to the west. A 100 m ice core drilled in 1984 at point 340, 22 km from the ice edge, probably goes back to A.D. 1460; it has been dated by isotopic stratigraphy. The accumulation rate up-stream of the drilling site was deduced from the sequence of annual layers, using a simple ice-flow model. The accumulation shows strong variations over the last 200 years, which may be caused in part by local variations in the accumulation on Ronne Ice shelf.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dataset shows the ice thickness over Wilkins Ice Shelf, Antarctic Peninsula derived from TanDEM-X Interferometry. The data has been acquired between June and August 2012. The TanDEM-X heights have been linked to CryoSAT-2 heights (V. Helm) from the respective time stamp. Elevations have been transformed from WGS84 ellipsoidal heights to the EGM2008 geoid. The ice shelf thickness was estimated assuming hydrostatic equilibrium and a mean ice density of 915 kg/m³.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By incorporating recently available remote sensing data, we investigated the mass balance for all individual tributary glacial basins of the Lambert Glacier-Amery Ice Shelf system, East Antarctica. On the basis of the ice flow information derived from SAR interferometry and ICESat laser altimetry, we have determined the spatial configuration of eight tributary drainage basins of the Lambert-Amery glacial system. By combining the coherence information from SAR interferometry and the texture information from SAR and MODIS images, we have interpreted and refined the grounding line position. We calculated ice volume flux of each tributary glacial basin based on the ice velocity field derived from Radarsat three-pass interferometry together with ice thickness data interpolated from Australian and Russian airborne radio echo sounding (RES) surveys and inferred from ICESat laser altimetry data. Our analysis reveals that three tributary basins have a significant net positive imbalance, while five other subbasins are slightly positive or close to zero balance. Overall, in contrast to previous studies, we find that the grounded ice in Lambert Glacier-Amery Ice Shelf system has a positive mass imbalance of 22.9 ± 4.4 Gt/a. The net basal melting for the entire Amery Ice Shelf is estimated to be 27.0 ± 7.0 Gt/a. The melting rate decreases rapidly from the grounding zone to the ice shelf front. Significant basal refreezing is detected in the downstream section of the ice shelf. The mass balance estimates for both the grounded ice sheet and the ice shelf mass differ substantially from other recent estimates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Iceberg calving has been assumed to be the dominant cause of mass loss for the Antarctic ice sheet, with previous estimates of the calving flux exceeding 2,000 gigatonnes per year. More recently, the importance of melting by the ocean has been demonstrated close to the grounding line and near the calving front. So far, however, no study has reliably quantified the calving flux and the basal mass balance (the balance between accretion and ablation at the ice-sheet base) for the whole of Antarctica. The distribution of fresh water in the Southern Ocean and its partitioning between the liquid and solid phases is therefore poorly constrained. Here we estimate the mass balance components for all ice shelves in Antarctica, using satellite measurements of calving flux and grounding-line flux, modelled ice-shelf snow accumulation rates and a regional scaling that accounts for unsurveyed areas. We obtain a total calving flux of 1,321 ± 144 gigatonnes per year and a total basal mass balance of -1,454 ± 174 gigatonnes per year. This means that about half of the ice-sheet surface mass gain is lost through oceanic erosion before reaching the ice front, and the calving flux is about 34 per cent less than previous estimates derived from iceberg tracking. In addition, the fraction of mass loss due to basal processes varies from about 10 to 90 per cent between ice shelves. We find a significant positive correlation between basal mass loss and surface elevation change for ice shelves experiencing surface lowering and enhanced discharge. We suggest that basal mass loss is a valuable metric for predicting future ice-shelf vulnerability to oceanic forcing.