789 resultados para Ronne Antarctic Research Expedition, 1946-1948
em Publishing Network for Geoscientific
Resumo:
The results of oceanographic observations on board the icebreaker "Shirase" and tidal observations at Syowa Station, Antarctica, are presented in this report. The oceanographic observations were carried out by the summer party of the 37th Japanese Antarctic Research Expedition (JARE-37) during the austral summer of 1995/1996. The tidal observations were carried out by the winter party of JARE-36 from February 1995 to January 1996.
Resumo:
Under the Chinese National Antarctic Research Expedition program in 2006, the annual thermal mass balance of landfast ice in the vicinity of Zhongshan Station, Prydz Bay, east Antarctica, was investigated. Sea ice formed from mid-February onward, and maximum ice thickness occurred in late November. Snow cover remained thin, and blowing snow caused frequent redistribution of the snow. The vertical ice salinity showed a 'question-mark-shaped' profile for most of the ice growth season, which only turned into an 'I-shaped' profile after the onset of ice melt. The oceanic heat flux as estimated from a flux balance at ice-ocean interface using internal ice temperatures decreased from 11.8 (±3.5) W/m**2 in April to an annual minimum of 1.9 (±2.4) W/m**2 in September. It remained low through late November, in mid-December it increased sharply to about 20.0 W/m**2. Simulations applying the modified versions of Stefan's law, taking account the oceanic heat flux and ice-atmosphere coupling, compare well with observed ice growth. There was no obvious seasonal cycle for the thermal conductivity of snow cover, which was also derived from internal ice temperatures. Its annual mean was 0.20 (±0.04) W/m/°C.
Resumo:
On the basis of aerial photographs of sea ice floes in the marginal ice zone (MIZ) of Prydz Bay acquired from December 2004 to February 2005 during the 21st Chinese National Antarctic Research Expedition, image processing techniques are employed to extract some geometric parameters of floes from two merged transects covering the whole MIZ. Variations of these parameters with the distance into the MIZ are then obtained. Different parameters of floe size, namely area, perimeter, and mean caliper diameter (MCD), follow three similar stages of increasing, flat and increasing again, with distance from the open ocean. Floe shape parameters (roundness and the ratio of perimeter to MCD), however, have less significant variations than that of floe size. Then, to modify the deviation of the cumulative floe size distribution from the ideal power law, an upper truncated power-law function and a Weibull function are used, and four calculated parameters of the above functions are found to be important descriptors of the evolution of floe size distribution in the MIZ. Among them, Lr of the upper truncated power-law function indicates the upper limit of floe size and roughly equals the maximum floe size in each square sample area. L0 in the Weibull distribution shows an increasing proportion of larger floes in squares farther from the open ocean and roughly equals the mean floe size. D in the upper truncated power-law function is closely associated with the degree of confinement during ice breakup. Its decrease with the distance into MIZ indicates the weakening of confinement conditions on floes owing to wave attenuation. The gamma of the Weibull distribution characterizes the degree of homogeneity in a data set. It also decreases with distance into MIZ, implying that floe size distributes increase in range. Finally, a statistical test on floe size is performed to divide the whole MIZ into three distinct zones made up of floes of quite different characteristics. This zonal structure of floe size also agrees well with the trends of floe shape and floe size distribution, and is believed to be a straightforward result of wave-ice interaction in the MIZ.
Resumo:
This paper describes a 1 : 2 500 000 scale aeromagnetic anomaly map produced by the joint efforts of VNIIOkeangeologia, Polar Marine Geological Research Expedition (PMGRE) and the Alfred Wegener Institute for Polar and Marine Research (AWl) for the Weddell Sea region covering 1 850 000 km' of West Antarctica. Extensive regional magnetic survey flights with line-spacing of about 20 km and 5 km were carried out by the PMGRE between 1977 and 1989. In course of these investigations the PMGRE flew 9 surveys with flight-line spacing of 20 km and 6 surveys with flight-line spacing of 5 km mainly over the mountain areas of southern Palmer Land, western Dronning Maud Land, Coats Land and Pensacola Mountains, over the Ronne lee Shelf and the Filchner Ice Shelf and the central part of the Weddell Sea. More than 215 000 line-kilometers of total field aeromagnetic data have been acquired by using an Ilyushin Il-14 ski-equipped aircraft. Survey operations were centered on the field base stations Druzhnaya-1, -2, and -3, from which the majority of the Weddell Sea region network was completed. The composite map of the Weddell Sea region is prepared in colour, showing magnetic anomaly contours at intervals of 50-100 nT with supplemental contours at an interval of 25 nT in low gradient areas, on a polar stereographic projection. The compiled colour magnetic anomaly map of the Weddell Sea region demonstrates that features of large areal extent, such as geologic provinces, fold-belts, ancient eratonic fragments and other regional structural features can be readily delineated. The map allows a comparison of regional magnetic features with similar-scale geological structures on geological and geophysical maps. It also provides a database for the future production of the ''Digital Magnetic Anomaly Map of Antarctica'' in the framework of the Scientific Committee on Antarctic Research/International Association of Geomagnetism and Aeronomy (SCAR/IAGA) compilation.
Resumo:
Samples from sediment cores collected during the Swedish Deep-Sea Expedition 1947-1948 have been analyzed in the Geochemical laboratory of the Geological Survey of Sweden. Most samples were placed at our disposal by Professor Hans Pettersson, leader of the expedition mentioned. For complementary studies, samples from the Atlantic and Indian oceans were included in our investigation and the samples placed at our disposal by Professor B. Kullenberg, Göteborg. From the Tyrrhenian Sea we got samples from Professor E. Norin, Uppsala.
Resumo:
The datasets present measurements of cDOM absorption of lakes located in Antarctic oasis during the summer periods from 2013 to 2016. In summer season of 2013 water samples were collected on Fildes Peninsula (King George Island, West Antarctica) - Bellingshausen Station, Russia. Investigated lakes on Fides Peninsula were completely or partly free from ice cover during water sampling. In summer seasons of 2014-2016 water samples were collected on Vestfold Hills, Reuer Island and Larsemann Hills Oasis (East Antarctica) - Progress station, Russia. During 2014-2016 summer season part of lakes on Larsemann Hills Oasis were free from ice cover, some of the lakes were completely covered by ice and were drilled before sampling. Part of the water samples from Progress Station (2015) has not been filtered. cDOM is operationally defined by the chosen filter pore size. Samples have been consistently filtrated through 0.7 µm pore size glas fibre filters. cDOM filtrates have been stored in darkness and have been measured after the expedition using the dual-beam Specord200 laboratory spectrometer (Jena Analytik) at the Otto Schmidt Laboratory OSL, Arctic and Antarctic Research Institute, St. Petersburg, Russia. The OSL cDOM protocol (Heim and Roessler, 2016) prescribes 3 Absorbance (A) measurements per sample from UV to 750 nm against ultra-pure water. The absorption coefficient, a, is calculated by a = 2.303A/L, where L is the pathlength of the cuvette [m], and the factor 2.303 converts log10 to loge. The output of the calculation is a continuous spectrum of a. The cDOM a spectra are used to determine the exponential slope value for specific wavelength ranges, S by fitting the data between min and max wavelength to an exponential function. We provide cDOM absorption coefficients for the wavelengths 254, 260, 350, 375, 400, 412, 440, 443 nm [1/m] and Slope values for three different UV, VIS, wavelength ranges: 275 to 295 nm, 350 to 400 nm, 300 to 500 nm [1/nm]. All data were carried out by scientists from Arctic and Antarctic Research Institute and Saint Petersburg State University of Russia during Russian Antarctic Expedition in 2013-2016.
Resumo:
The density, species composition, and possible change in the status of pack ice seals within the Weddell Sea were investigated during the 1997/1998 summer cruise of the RV "Polarstern" (ANT-XV/3, PS48). Comparisons were made with previous surveys in the Weddell Sea where it was assumed that all seals were counted in a narrow strip on either side oft he ship or aircraft. A total of 15 aerial censuses were flown during the period 23 January - 7 March 1998 in the area bounded by 07°08' and 45°33' West longitude. The censused area in the eastern Weddell Sea was largely devoid of pack ice while a well circumscribed pack ice field remained in the western Weddell Sea. A total of 3,636 (95.4 %) crabeater seals, 21 (0.5 %) Ross seals, 45 (1.2 %) leopard seals and 111 (2.9 %) Weddell seals were observed on the pack ice during a total of 1,356.57 linear nautical miles (244.2 nm) of transect line censused. At a mean density of 21.16 1/nm**2 over an area of 244.2 nm, it is the highest densities on record for crabeater seals, density of up to 411.7 1/nm**2 being found in small areas. The overall high densities of seals (30.18 1/nm**2) recorded for the eastern Weddell Sea (27.46 1/nm**2, 0.27 1/nm**2, and 0.66 1/nm**2 for crabeater, leopard and Weddell seals respectively) is a consequence of the drastically reduced ice cover and the inverse relationship that exists between cover and seal densities. Ross seal densities (0.08 1/nm**2) were the lowest on record fort the area. It is suggested that seals largely remain within the confines of the pack ice despite seasonal and annual changes in its distribution. Indications are that in 1998 the El Niño has manifested itself in the Weddell Sea, markedly influencing the density and distribution of pack ice seals.
Resumo:
Introduction: Chemical composition of water determines its physical properties and character of processes proceeding in it: freezing temperature, volume of evaporation, density, color, transparency, filtration capacity, etc. Presence of chemical elements in water solution confers waters special physical properties exerting significant influence on their circulation, creates necessary conditions for development and inhabitance of flora and fauna, and imparts to the ocean waters some chemical features that radically differ them from the land waters (Alekin & Liakhin, 1984). Hydrochemical information helps to determine elements of water circulation, convection depth, makes it easier to distinguish water masses and gives additional knowledge of climatic variability of ocean conditions. Hydrochemical information is a necessary part of biological research. Water chemical composition can be the governing characteristics determining possibility and limits of use of marine objects, both stationary and moving in sea water. Subject of investigation of hydrochemistry is study of dynamics of chemical composition, i.e. processes of its formation and hydrochemical conditions of water bodies (Alekin & Liakhin 1984). The hydrochemical processes in the Arctic Ocean are the least known. Some information on these processes can be obtained in odd publications. A generalizing study of hydrochemical conditions in the Arctic Ocean based on expeditions conducted in the years 1948-1975 has been carried out by Rusanov et al. (1979). The "Atlas of the World Ocean: the Arctic Ocean" contains a special section "Hydrochemistry" (Gorshkov, 1980). Typical vertical profiles, transects and maps for different depths - 0, 100, 300, 500, 1000, 2000, 3000 m are given in this section for the following parameters: dissolved oxygen, phosphate, silicate, pH and alkaline-chlorine coefficient. The maps were constructed using the data of expeditions conducted in the years 1948-1975. The illustrations reflect main features of distribution of the hydrochemical elements for multi-year period and represent a static image of hydrochemical conditions. Distribution of the hydrochemical elements on the ocean surface is given for two seasons - winter and summer, for the other depths are given mean annual fields. Aim of the present Atlas is description of hydrochemical conditions in the Arctic Ocean on the basis of a greater body of hydrochemical information for the years 1948-2000 and using the up-to-date methods of analysis and electronic forms of presentation of hydrochemical information. The most wide-spread characteristics determined in water samples were used as hydrochemical indices. They are: dissolved oxygen, phosphate, silicate, pH, total alkalinity, nitrite and nitrate. An important characteristics of water salt composition - "salinity" has been considered in the Oceanographic Atlas of the Arctic Ocean (1997, 1998). Presentation of the hydrochemical characteristics in this Hydrochemical Atlas is wider if compared with that of the former Atlas (Gorshkov, 1980). Maps of climatic distribution of the hydrochemical elements were constructed for all the standard depths, and seasonal variability of the hydrochemical parameters is given not only for the surface, but also for the underlying standard depths up to 400 m and including. Statistical characteristics of the hydrochemical elements are given for the first time. Detailed accuracy estimates of initial data and map construction are also given in the Atlas. Calculated values of mean-root deviations, maximum and minimum values of the parameters demonstrate limits of their variability for the analyzed period of observations. Therefore, not only investigations of chemical statics are summarized in the Atlas, but also some elements of chemical dynamics are demonstrated. Digital arrays of the hydrochemical elements obtained in nodes of a regular grid are the new form of characteristics presentation in the Atlas. It should be mentioned that the same grid and the same boxes were used in the Atlas, as those that had been used by creation of the US-Russian climatic Oceanographic Atlas. It allows to combine hydrochemical and oceanographic information of these Atlases. The first block of the digital arrays contains climatic characteristics calculated using direct observational data. These climatic characteristics were not calculated in the regions without observations, and the information arrays for these regions have gaps. The other block of climatic information in a gridded form was obtained with the help of objective analysis of observational data. Procedure of the objective analysis allowed us to obtain climatic estimates of the hydrochemical characteristics for the whole water area of the Arctic Ocean including the regions not covered by observations. Data of the objective analysis can be widely used, in particular, in hydrobiological investigations and in modeling of hydrochemical conditions of the Arctic Ocean. Array of initial measurements is a separate block. It includes all the available materials of hydrochemical observations in the form, as they were presented in different sources. While keeping in mind that this array contains some amount of perverted information, the authors of the Atlas assumed it necessary to store this information in its primary form. Methods of data quality control can be developed in future in the process of hydrochemical information accumulation. It can be supposed that attitude can vary in future to the data that were rejected according to the procedure accepted in the Atlas. The hydrochemical Atlas of the Arctic Ocean is the first specialized and electronic generalization of hydrochemical observations in the Arctic Ocean and finishes the program of joint efforts of Russian and US specialists in preparation of a number of atlases for the Arctic. The published Oceanographic Atlas (1997, 1998), Atlas of Arctic Meteorology and Climate (2000), Ice Atlas of the Arctic Ocean prepared for publication and Hydrochemical Atlas of the Arctic Ocean represent a united series of fundamental generalizations of empirical knowledge of Arctic Ocean nature at climatic level. The Hydrochemical Atlas of the Arctic Ocean was elaborated in the result of joint efforts of the SRC of the RF AARI and IARC. Dr. Ye. Nikiforov was scientific supervisor of the Atlas, Dr. R. Colony was manager on behalf of the USA and Dr. L. Timokhov - on behalf of Russia.