458 resultados para Rocks, Carbonate
em Publishing Network for Geoscientific
Resumo:
Samples of recent to Miocene fish and marine mammal bones from the bottom of the Atlantic and Pacific Oceans and Miocene Maikop deposits (Transcaspian region) are studied by X-ray diffraction technique combined with chemical and energy-dispersive analyses. Changes of lattice parameters and chemical composition of bioapatite during fossilization and diagenesis suggest that development of skeletal apatite proceeds from dahllite-type hydroxyapatite to francolite-type carbonate-fluorapatite. It is assumed that jump-type transition from dahllite to francolite during initial fossilization reflects replacement of biogeochemical reactions in living organisms, which are subject to nonlinear laws of nonequilibrium thermodynamics, by physicochemical processes according to the linear equilibrium thermodynamics.
Resumo:
Detailed data obtained on chemistry of sedimentary rocks from the Mountainous Crimea and the Northwestern Caucasus that were dated at the Cenomanian/Turonian boundary and formed during Oceanic Anoxic Event 2 make it possible to calculate dissolved oxygen concentration in bottom waters of the sedimentation basin. Enrichment factors of trace elements in black shales are revised and an explanation is suggested for genesis of the rocks with regard for unusual climatic changes.
Resumo:
A marked ocean acidification event and elevated atmospheric carbon dioxide concentrations following the extreme environmental conditions of the younger Cryogenian glaciation have been inferred from boron isotope measurements. Calcium and magnesium isotope analyses offer additional insights into the processes occurring during this time. Data from Neoproterozoic sections in Namibia indicate that following the end of glaciation the continental weathering flux transitioned from being of mixed carbonate and silicate character to a silicate-dominated one. Combined with the effects of primary dolomite formation in the cap dolostones, this caused the ocean to depart from a state of acidification and return to higher pH after climatic amelioration. Differences in the magnitude of stratigraphic isotopic changes across the continental margin of the southern Congo craton shelf point to local influences modifying and amplifying the global signal, which need to be considered in order to avoid overestimation of the worldwide chemical weathering flux.
Resumo:
Total carbon and carbonate contents, quantitative carbonate mineralogy, trace metal concentrations, and stable isotope compositions were determined on a suite of samples from the Miocene sections at Sites 1006 and 1007. The Miocene section at Site 1007, located at the toe-of-slope, contains a relatively high proportion of bank-derived components and becomes fully lithified at a depth of ~300 meters below seafloor (mbsf). By contrast, Miocene sediments at Site 1006, situated in Neogene drift deposits in the Straits of Florida and composed primarily of pelagic carbonates, do not become fully lithified until a depth of ~675 mbsf. Diagenetic and compositional contrasts between Sites 1006 and 1007 are reflected in geochemical data derived from sediment samples from each site.
Resumo:
A felsic volcanic series (605-825 mbsf) overlain by upper Eocene shallow-water sediments (500-605 mbsf) and basalticandesitic sills that intruded into sediments of Holocene to Miocene age (0-500 mbsf) was drilled in the forearc region of the Lau Basin at a water depth of 4810 m. The volcanic sequence at Site 841 includes altered and mineralized calc-alkaline rhyolites and dacites, dacitic tuffs, lapilli tuffs, flow breccias, and welded tuffs. These rocks formed subaerially or in a very shallow-water environment suffering a subsidence of >5000 m since Eocene times. Calculations of gains and losses of the major components during alteration show most pronounced changes in the uppermost 70 m of the volcanic sequence. Here, Al, Fe, Mg, and K are enriched, whereas Si and Na are strongly depleted. Illite, vermiculite, chlorite, and hematite predominate in this part of the hole. Throughout the section, quartz, plagioclase, kaolinite, and calcite are present. Sulfide mineralization (up to 10 vol%) consisting mainly of disseminated pyrite (with minor pyrrhotite inclusions) and marcasite together with minor amounts of chalcopyrite is pervasive throughout. Locally, a few sulfide-bearing quartz-carbonate veins as well as Ti-amphibole replacement by rutile and then by pyrite were observed. Strong variations in the As content of sulfides (from 0 to 0.69 wt%) from the same depth interval and local enrichments of Co, Ni, and Cu in pyrite are interpreted to result from fluctuations in fluid composition. Calculations of oxygen and sulfur fugacities indicate that fO2 and fS2 were high at the top and lower at the bottom of the sequence. Sulfur isotope determinations on separated pyrite grains from two samples give d34S values of +6.4ë and +8.4ë, which are close to those reported from Kuroko and Okinawa Trough massive sulfide deposits and calc-alkaline volcanic rocks of the Japanese Ryukyu Island Arc. Calculated chlorite formation temperatures of 265°-290°C at the top of the sequence are consistent with minimum formation temperatures of fluid inclusions in secondary quartz, revealing a narrow range of 270°-297°C. Chlorite formation temperatures are constant downhole and do not exceed 300°C. The presence of marcasite and 4C-type pyrrhotite indicates a formation temperature of <= 250°C. At a later stage, illite was formed at the top of the volcanic series at temperatures well below 200°C.
Resumo:
The monograph has been written on the base of data obtained from samples and materials collected during the 19-th cruise of RV ''Akademik Vernadsky'' to the Northern and Equatorial Indian Ocean. Geological features of the region (stratigraphy, tectonic structure, lithology, distribution of ore-forming components in bottom sediments, petrography of igneous rocks, etc.) are under consideration. Regularities of trace element concentration in Fe-Mn nodules, nodule distribution in bottom sediments, and engineering-geological properties of sediments within the nodule fields have been studied. Much attention is paid to ocean crust rocks. The wide range of ore mineralization (magnetite, chromite, chalcopyrite, pyrite, pentlandite, and other minerals) has been ascertained.
Resumo:
Seven manganese nodules, eight ferromanganiferous shales from the Cretaceous Wai Bua Formation of Timor, and a pelagic limestone with four ferromanganese enriched layers from the Middle Eocene of Timor have been analysed. The nodules are compared with modern deep-sea nodules, and the ferromanganiferous shales are contrasted with relatively shallow marine manganiferous shales. The conclusion is reached that these rocks from Timor were probably deposited in a bathypelagic environment. There is a total absence of any indication that volcanic material has contributed to these deposits. The chemical composition of the ferromanganiferous rocks are discussed and some indications of biogenic influences are noted. The Middle Eocene pelagic limestone is compared with a similar modern sediment described from the Easter Island Rise in the Pacific.