132 resultados para Rock fall
em Publishing Network for Geoscientific
Resumo:
Results of pedogeomorphological, geochronological and paleobotanical investigations are presented covering the last ca. 4,000 years. The study sites are located in the heavily degraded Kyichu River catchment around Lhasa at 3,600-4,600 m a.s.l. Repeatedly, colluvial sediments have been recorded overlying paleosols. These deposits can be divided into i) coarse-grained sediments with a high proportion of stones and boulders originating from alluvial fans and debris flows, ii) matrix supported sediments with some stones and boulders originating from mudflows or combined colluvial processes such as hillwash plus rock fall, and iii) fine-grained sediments originating from hill wash. The IRSL multi-level dating of profile QUG 1 points to a short-time colluvial sedimentation between 1.0 ± 0.1 and 0.8 ± 0.1 ka. In contrast, dated paleosols of profile GAR 1 (7,908 ± 99 and 3,668 ± 57 BP) encompass a first colluvial episode. Here, the upper colluvial sedimentation took place during several periods between 2.6 ± 0.3 and 0.4 ± 0.1 ka. For the first time in Tibet, a systematic extraction, determination and dating of charcoals from buried paleosols was conducted. The charcoals confirm the Late Holocene presence of juniper forests or woodlands in a now treeless, barren environment. A pollen diagram from Lhasa shows a distinct decline of pollen of the Jumperus-type around 4,140 ± 50 BP, which is interpreted as indicating a clearing of forests on the adjacent slopes. It is assumed that the environmental changes from forests to desertic rangelands since ca. 4,000 BP have been at least reinforced by humans.
Resumo:
Several studies indicate that the 2011 Tohoku-Oki earthquake (Mw 9.0) off the Pacific coast of Japan has induced slip to the trench and triggered landslides in the Japan Trench. In order to better understand these processes, detailed mapping and shallow-coring landslides at the trench as well as Integrated Ocean Drilling Program (IODP) deep drilling to recover the plate boundary décollement (Japan Trench Fast Earthquake Drilling Project, JFAST) have been conducted. In this study we report sediment core data from the rapid response R/V SONNE cruise (SO219A) to the Japan Trench, evidencing a Mass Transport Deposit (MTD) in the uppermost section later drilled at this JFAST-site during IODP Expedition 343. A 8.7 m long gravity core (GeoB16423-1) recovered from ~7,000 m water depth reveals a 8 m sequence of semi-consolidated mud clast breccias embedded in a distorted chaotic sediment matrix. The MTD is covered by a thin veneer of 50 cm hemipelagic, bioturbated diatomaceous mud. This stratigraphic boundary can be clearly distinguished by using physical properties data from Multi Sensor Core Logging and from fall-cone penetrometer shear strength measurements. The geochemical analysis of the pore-water shows undisturbed linear profiles measured from the seafloor downcore across the stratigraphic contact between overlying younger background-sediment and MTD below. This indicates that the investigated section has not been affected by a recent sediment destabilization in the course of the giant Tohoku-Oki earthquake event. Instead, we report an older landslide which occurred between 700 and 10,000 years ago, implying that submarine mass movements are dominant processes along the Japan Trench. However, they occur on local sites and not during each megathrust earthquake.
Resumo:
We present differential bathymetry and sediment core data from the Japan Trench, sampled after the 2011 Tohoku-Oki (offshore Japan) earthquake to document that prominent bathymetric and structural changes along the trench axis relate to a large (~27.7 km**2) slump in the trench. Transient geochemical signals in the slump deposit and analysis of diffusive re-equilibration of disturbed SO4**2- profiles over time constrain the triggering of the slump to the 2011 earthquake. We propose a causal link between earthquake slip to the trench and rotational slumping above a subducting horst structure. We conclude that the earthquake-triggered slump is a leading agent for accretion of trench sediments into the forearc and hypothesize that forward growth of the prism and seaward advance of the deformation front by more than 2 km can occur, episodically, during a single-event, large mega-thrust earthquake.
Resumo:
Mass-wasting deposits characterize the Upper Jurassic(?) to Lower Cretaceous sedimentary record of the Iberia Abyssal Plain. These deposits include olistostromes at Site 897, olistostromes and/or possible rock-fall deposits at Site 899, a breccia succession at Site 1068, slumped and fractured deposits at Site 1069, and a breccia succession at Site 1070. Whereas the exact origin of these deposits is uncertain, the regional common occurrence of middle to upper Mesozoic mass-wasting deposits suggests that they record the early rifting evolution of the west Iberia margin. This data report presents both qualitative and semiquantitative results from XRD analyses of the breccia matrix at Site 1068. In this study the matrix is defined as the fine-grained particles (as viewed through a binocular microscope) plus cement. Results are based on analytical methods that aimed to isolate the desired matrix from larger clast contamination prior to XRD analyses. In addition, the breccia was sampled at a higher resolution than was conducted aboard ship, producing a more complete description of downcore matrix mineralogical changes. The data presented here may be used to (1) further justify the subunit designation of Unit IV made aboard ship, (2) help determine to what degree the matrix and the larger clasts (studied in thin section aboard ship; Shipboard Scientific Party, 1998, doi:10.2973/odp.proc.ir.173.106.1998) are compositionally distinct, (3) help identify the extent of hydrothermal fluid migration in the breccia, and (4) support the proposed shipboard hypothesis that the Site 1068 breccia succession resulted from multiple mass-wasting.