8 resultados para Robinia pseudoacacia
em Publishing Network for Geoscientific
Resumo:
Southern China, especially Yunnan, has undergone high tectonic activity caused by the uplift of Himalayan Mountains during the Neogene, which led to a fast changing palaeogeography. Previous study shows that Southern China has been influenced by the Asian Monsoon since at least the Early Miocene. However, it is yet not well understood how intense the Miocene monsoon system was. In the present study, 63 fossil floras of 16 localities from Southern China are compiled and evaluated for obtaining available information concerning floristic composition, stratigraphic age, sedimentology, etc. Based on such reliable information, selected mega- and micro-floras have been analysed with the coexistence approach to obtain quantitative palaeoclimate data. Visualization of climate results in maps shows a distinct spatial differentiation in Southern China during the Miocene. Higher seasonalities of temperature and precipitation occur in the north and south parts of Southern China, respectively. During the Miocene, most regions of Southern China and Europe were both warm and humid. Central Eurasia was likely to be an arid center, which gradually spread westward and eastward. Our data provide information about Miocene climate patterns in Southern China and about the evolution of these patterns throughout the Miocene, and is also crucial to unravel and understand the climatic signals of global cooling and tectonic uplift.
Resumo:
Neogene climates and vegetation history of western Yunnan are reconstructed on the basis of known fossil plants using the Coexistence Approach (CA) and Leaf Margin Analysis (LMA). Four Neogene leaf floras from Tengchong, Jianchuan and Eryuan in southwestern China are analyzed by the CA, and the paleoclimatic data of one Miocene carpoflora from Longling and three Pliocene palynofloras from Longling, Yangyi and Eryuan are used for comparison. The Miocene vegetation of the whole of West Yunnan is subtropical evergreen broad-leaved forest, and a similar mean annual precipitation is inferred for Tengchong, Longling and Jianchuan. However, by the Late Pliocene a large difference in vegetation occurred between the two slopes of Gaoligong Mountain, western Yunnan. The region of Tengchong retained a subtropical evergreen broad-leaved forest vegetation, whereas in Yangyi and Eryuan a vertical vegetation zonation had developed, which consists, in ascending order, of humid evergreen broad-leaved, needle and broad-leaved mixed evergreen, and coniferous forests. Distinctively, the Late Pliocene vegetational patterns of West Yunnan were already very similar to those of the present, and the Pliocene mean annual precipitation in Tengchong was markedly higher than that of Yangyi and Eryuan. Considering that the overall vegetation of West Yunnan and the precipitation at Yangyi and Eryuan have undergone no distinct change since the Late Pliocene, we conclude that the Hengduan Mountains on the northern boundary of West Yunnan must have arisen after the Miocene and approached their highest elevation before the Late Pliocene. Furthermore, the fact of the eastern portion of the Tibetan Plateau underwent a slight uplift after the Late Pliocene is also supported.