105 resultados para Road deposited solids
em Publishing Network for Geoscientific
Resumo:
Recent discoveries relating to the circulation of fluids within the oceanic crust include the finding of both important fluxes of elements and isotopes into the oceans by ridge-crest hydrothermal convection and important fluxes of heat out of the oceanic crust by convection at ridge crests and at some distance from ridge crests. In the present chapter, I present isotopic, chemical, and physical data from sediments and pore waters of Deep Sea Drilling Project (DSDP) Holes 503A and 503B. These results are modeled in terms of pore-water diffusion, advection, and production to ascertain the relative contribution of these processes at this location, 7.5 m.y. removed from ridge-crest hydrothermal activity. The observations made here contribute to the understanding of chemical and heat transport in oceanic crust of moderate age.
Resumo:
The silicate fractions of recent pelagic sediments in the central north Pacific Ocean are dominated by eolian dust derived from central Asia. An 11 Myr sedimentary record at ODP Sites 885/886 at 44.7°N, 168.3°W allows the evaluation of how such dust and its sources have changed in response to late Cenozoic climate and tectonics. The extracted eolian fraction contains variable amounts (>70%) of clay minerals with subordinate quartz and plagioclase. Uniform Nd isotopic compositions (epsilon-Nd =38.6 to 310.5) and Sm/Nd ratios (0.170-0.192) for most of the 11 Myr record demonstrate a well-mixed provenance in the basins north of the Tibetan Plateau and the Gobi Desert that was a source of dust long before the oldest preserved Asian loess formed. epsilon-Nd values of up to 36.5 for samples 62.9 Ma indicate <=35 wt% admixture of a young, Kamchatka-like volcanic arc component. The coherence of Pb and Nd in the erosional cycle allows us to constrain the Pb isotopic composition of Asian loess devoid of anthropogenic contamination to 206Pb/204Pb =18.97 +/- 0.06, 207Pb/204Pb =15.67 +/- 0.02, 208Pb/204Pb =39.19 +/- 0.11. 87Sr/86Sr (0.711-0.721) and Rb/Sr ratios (0.39-1.1) vary with dust mineralogy and provide an age indication of ~250 Ma. 40Ar/39Ar ages of six dust samples are uniform around 200 Ma and match the K-Ar ages of modern dust deposited on Hawaii. These data reflect the weighted age average of illite formation. Changes from illite- smectite with significant kaolinite to illite- and chlorite-rich, kaolinite-free assemblages since the late Pliocene document changes in the intensity of chemical weathering in the source region. Such weathering evidently did not disturb the K-Ar systematics, and only induced scatter in the Rb-Sr data. We propose that when smectite forms at the expense of illite, K and Ar are quantitatively lost from what becomes smectite, but are quantitatively retained in adjacent illite layers. 40Ar/39Ar age data, therefore, are insensitive to smectite formation during chemical weathering but date the diagenetic growth of illite, the major K-bearing phase in the dust. Over the past 12 Myr, the dust flux to the north Pacific increased by more than an order of magnitude, documenting a substantial drying of central Asia. This climatic change, however, did not alter the ultimate source of the dust, and neoformational products of chemical weathering always remained subordinate to assemblages reworked by mechanical erosion in dust deposited in eastern Asia and the Pacific Ocean.
Resumo:
Analyses of sediments from Leg 64 sites reveal a diverse and in one case unique geochemistry. Sites are characterized by high heat flow along an active, divergent plate boundary, or rapid accumulation of diatom muds, or both. The geochemical trends of Sites 474-476 at the tip of Baja California reflect changes4n the percentages of sedimentary components - particularly biogenous matter and mineralogy - that support interpretations of sedimentary environments inferred to be present since the commencement of subsidence along this young, passive continental margin. The sediments below dolerite sills in Holes 477, 477A, 478, and 481 show major mineralogic and chemical deviations from "average" hemipelagic sediments. The sills appear to have two functions: (1) they allow hydrothermal circulation and metamorphism in a partially closed system by trapping heat and fluids emanating from below, and (2) they expel heated interstitial fluids at the moment of intrusion and mobilize elements, most likely leading to the formation of metalliferous deposits along the surface traces of normal faults in the basin. The hydrothermal system as a whole appears to be localized and ephemeral, as is indicated by the lack of similar geochemical trends and high heat flow at Sites 478 and 481. Site 479 illustrates sedimentation in an oxygen-minimum zone with anoxic sediments and concomitant geochemical trends, especially for MnO. With few exceptions, geochemical trends are remarkably constant with depth, suggesting that Site 479 can serve as an "internal" standard or average sediment against which the magnitude of hydrothermal alteration at the basinal Sites 477, 478, and 481 can be measured.