142 resultados para River sediments -- Catalonia -- Ter (River)
em Publishing Network for Geoscientific
Resumo:
According to average grain size parameters (Kd, Kd1) recent sediments from the northern Caspian Sea and the Barents Sea shelf are similar, while sediments from the Norwegian Sea are closer to their counterparts of the World Ocean. Seaward content of subcolloidal (<0.001 mm) size fraction increases against the background of decreasing proportions of coarse- and medium-grained pelite (<0.01 mm) material.
Resumo:
Data are presented on concentrations of aliphatic and polycyclic aromatic hydrocarbons (AHC and PAH) in interstitial waters and bottom sediments of the Kara Sea compared to distribution of particulate matter and organic carbon. It was found that AHC concentrations within the water mass (aver. 16 µg/l) are mainly formed by natural processes. Distribution of AHC represents variability of hydrological and sedimentation processes in different regions of the sea. The widest ranges of the concentrations occurred in the Obskaya Guba - Kara Sea section: in water (10-310 µg/l for AHC and 0.4-7.2 ng/l for PAH) and in the surface layer of the bottom sediments (8-42 µg/l for AHC and 9-94 ng/g for PAH). Differentiation of hydrocarbons (HC) in different media follows regularities typical for marginal filters; therefore no oil and pyrogenic compounds are supplied to the open sea. In sediments contents of HC depend on variations in redox conditions in sediments and on their composition.
Resumo:
Based on grain-size, mineralogical and chemical analyses of samples collected in cruises of R/V Ekolog (Institute of Northern Water Problems, Karelian Research Centre of RAS, Petrozavodsk) in 2001 and 2003 regularities of chemical element distribution in surface layer bottom sediments of the Kem' River Estuary in the White Sea were studied. For some toxic elements labile and refractory forms were determined. Correlation analysis was carried out and ratios Me/Al were calculated as proxies of terrigenous contribution. Distribution of such elements as Fe, Mn, Zn, Cr, Ti was revealed to be influenced by natural factors, mainly by grain size composition of bottom sediments. These metals have a tendency for accumulation in fine-grained sediments with elevated organic carbon contents. Distribution of Ni is different from one of Fe, Mn, Zn, Cr, Ti. An assumption was made that these distinctions were caused by anthropogenic influence.
Resumo:
Biogeochemical behavior of a group of heavy metals and metalloids in water (including their dissolved and suspended particulate forms), bottom sediments, and zoobenthos was studied in the Ob River estuary (Obskaya Guba) - Kara Sea section on the basis of data obtained during Cruise 54 of R/V Akademik Mstislav Keldysh in September-October 2007. Changes in ratios of dissolved and particulate forms of Fe, Mn, Zn, Cu, Pb, Cd, and As were shown, as well as growth of adsorbed fractions of the elements in near-bottom suspended matter under mixing of riverine and marine waters. Features of chemical element accumulation in typical benthic organisms of the Obskaya Guba and the Kara Sea were revealed, and their concentrating factors were calculated based on specific conditions of the environment. It was shown that shells of bivalves possessing higher biomass compared to other groups of organisms in the Obskaya Guba play an important role in deposition of heavy metals. In the Obskaya Guba mollusks accumulate Cd and Pb at the background level, whereas Cu and Zn contents appear to be higher than the background level.
Resumo:
Studies of sulfur behavior in the water column and in sediments in river and seawater mixing zone were conducted in three areas of the Black and Azov Seas. These investigations showed constancy of sulfate concentrations versus chlorinity. Sulfur isotope composition in sulfates of surface, bottom, and pore waters depended on sulfate contents and salinity. The dependence was complicated by partial sulfate depletion in pore water due to bacterial sulfate reduction and also by alteration of isotope composition. Surface sediments in mixing zones are characterized by intensive sulfate reduction, great variability of content and isotopic composition of reduced sulfur, and a low mean isotopic fractionation factor of sulfur.
Resumo:
Heavy contaminant load released into the Northern Dvina River during flooding increased the concentrations of aliphatic (AHC) and polcyclic aromatic (PAH) hydrocarbons in water and bottom sediments. The composition of hydrocarbons was different from that of the summer low flow season. The concentrations of dissolved and particulate AHC ranged from 12 to 106 and from 192 to 599 µg/l, respectively, and bottom sediments contained from 26.2 to 329 µg/g AHC and 4 to 1785 ng/g PAH. As the transformation of AHC occurred at low spring temperatures, the alkane composition was shown to be dominated by terrigenous compounds, whereas more stable PAH showed elevated contents of petrogenic and pyrogenic compounds. It was also shown that the Northern Dvina-Dvina Bay geochemical barrier prevents contaminant input into the White Sea, i.e., acts as a marginal filter.
Resumo:
Bulk sediment chemistry from three Chilean continental margin Ocean Drilling Program sites constrains regional continental erosion over the past 30,000 years. Sediments from thirteen rivers that drain the (mostly igneous) Andes and the (mostly metamorphic) Coast Range, along with existing rock chemistry datasets, define terrestrial provenance for the continental margin sediments. Andean river sediments have high Mg/Al relative to Coast-Range river sediments. Near 36°S, marine sediments have high-Mg/Al (i.e. more Andean) sources during the last glacial period, and lower-Mg/Al (less Andean) sources during the Holocene. Near 41°S a Ti-rich source, likely from coast-range igneous intrusions, is prevalent during Holocene time, whereas high-Mg/Al Andean sources are more prevalent during the last glacial period. We infer that there is a dominant ice-sheet control of sediment sources. At 36°S, Andean-sourced sediment decreased as Andean mountain glaciers retreated after ~17.6 ka, coincident with local oceanic warming and southward retreat of the Patagonian Forest and, by inference, westerly winds. At 41°S Andean sediment dominance peaks and then rapidly declines at ~19 ka, coincident with local oceanic warming and the earliest deglacial sea-level rise. We hypothesize that this decreased flux of Andean material in the south is related to rapid retreat of the marine-based portion of the Patagonian Ice Sheet in response to global sea-level rise, as the resulting flooding of the southern portion of the Central Valley created a sink for Andean sediments in this region. Reversal of the decreasing deglacial Mg/Al trend at 41°S from 14.5 to 13.0 ka is consistent with a brief re-advance of the Patagonian ice sheet coincident with the Antarctic Cold Reversal.