5 resultados para River regime

em Publishing Network for Geoscientific


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nd isotopes are useful tracers for paleoceanography due to the short Nd residence time in seawater and the large differences between the isotopic signatures of various geological reservoirs. Therefore, ?Nd variations reflect the geological history of individual oceanic basins. Using a differential dissolution technique, which extracts Nd isotopes of seawater trapped in MnO2 coatings and carbonates in marine sediment, we measured almost two hundred samples from ODP Sites 758 and 757 in the Northern Bay of Bengal covering the last 4 Ma. For the first time, we have shown a covariation between epsilon-Nd and d18O over at least the last 800 ka. We also show that from 4 Ma to 2.6 Ma, epsilon-Nd is almost constant and starts to fluctuate at 2.6 Ma when northern glaciations increased. From 2.6 Ma to 1 Ma the fluctuation period is close to 40 ka while from 1 Ma to present it is dominantly 100 ka. We attribute these findings to mixing between Himalayan river water (that ultimately originates as Indian summer monsoon rain) and normal Bay of Bengal seawater. Previous studies on seawater, using epsilon-Nd, d18O analyzed on planktonic foraminifera and sedimentary data, can be integrated into this model. A simple quantitative binary mixing model suggests that the summer monsoon rain was more intense during interglacial than glacial periods. During last glacial episode, the monsoon trajectory was deviated to the east. At a large scale, the Indian monsoon is fully controlled by the variations in Northern Hemisphere climate but with a complex response function to this forcing. Our study clearly establishes the large potential of Nd isotope data to evaluate the hydrological river regime during the Quaternary and its relationship with climate fluctuations, particularly when the sediment archive is sampled close to sediment sources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a high-resolution reconstruction of tropical palaeoenvironmental changes for the last deglacial transition (18 to 9 cal. kyr BP) based on integrated oceanic and terrestrial proxies from a Congo fan core. Pollen, grass cuticle, Pediastrum and dinoflagellate cyst fluxes, sedimentation rates and planktonic foraminiferal d18O ratios, uK37 sea-surface temperature and alkane/alkenone ratio data highlight a series of abrupt changes in Congo River palaeodischarge. A major discharge pulse is registered at around 13.0 cal. kyr BP which we attribute to latitudinal migration of the Intertropical Convergence Zone (ITCZ) during deglaciation. The data indicate abrupt and short-lived changes in the equatorial precipitation regime within a system of monsoonal dynamics forced by precessional cycles. The phases of enhanced Congo discharge stimulated river-induced upwelling and enhanced productivity in the adjacent ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the data of synchronous observations of hydrophysical and biogeochemical parameters in the near-mouth and shallow-water areas of the northern Caspian in 2000-2001, the scale of spatiotemporal variability in the following characteristics of the water-bottom system was estimated (1) flow velocity and direction within vortex structures formed by the combined effect of wind, discharge current, and the presence of higher aquatic plants; (2) dependence of the spatial distribution of the content and composition of suspended particulate matter on the hydrodynamic regime of waters and development of phytoplankton; (3) variations in the grain-size, petrographic, mineralogical, and chemical compositions of the upper layer of bottom sediments at several sites in the northern Caspian related to the particular local combination of dominant natural processes; and (4) limits of variability in the group composition of humus compounds in bottom sediments. The acquired data are helpful in estimating the geochemical consequences of a sea level rise and during the planning of preventive environmental protection measures in view of future oil and gas recovery in this region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermokarst lakes are typical features of the northern permafrost ecosystems, and play an important role in the thermal exchange between atmosphere and subsurface. The objective of this study is to describe the main thermal processes of the lakes and to quantify the heat exchange with the underlying sediments. The thermal regimes of five lakes located within the continuous permafrost zone of northern Siberia (Lena River Delta) were investigated using hourly water temperature and water level records covering a 3-year period (2009-2012), together with bathymetric survey data. The lakes included thermokarst lakes located on Holocene river terraces that may be connected to Lena River water during spring flooding, and a thermokarst lake located on deposits of the Pleistocene Ice Complex. Lakes were covered by ice up to 2 m thick that persisted for more than 7 months of the year, from October until about mid-June. Lake-bottom temperatures increased at the start of the ice-covered period due to upward-directed heat flux from the underlying thawed sediment. Prior to ice break-up, solar radiation effectively warmed the water beneath the ice cover and induced convective mixing. Ice break-up started at the beginning of June and lasted until the middle or end of June. Mixing occurred within the entire water column from the start of ice break-up and continued during the ice-free periods, as confirmed by the Wedderburn numbers, a quantitative measure of the balance between wind mixing and stratification that is important for describing the biogeochemical cycles of lakes. The lake thermal regime was modeled numerically using the FLake model. The model demonstrated good agreement with observations with regard to the mean lake temperature, with a good reproduction of the summer stratification during the ice-free period, but poor agreement during the ice-covered period. Modeled sensitivity to lake depth demonstrated that lakes in this climatic zone with mean depths > 5 m develop continuous stratification in summer for at least 1 month. The modeled vertical heat flux across the bottom sediment tends towards an annual mean of zero, with maximum downward fluxes of about 5 W/m**2 in summer and with heat released back into the water column at a rate of less than 1 W/m**2 during the ice-covered period. The lakes are shown to be efficient heat absorbers and effectively distribute the heat through mixing. Monthly bottom water temperatures during the ice-free period range up to 15 °C and are therefore higher than the associated monthly air or ground temperatures in the surrounding frozen permafrost landscape. The investigated lakes remain unfrozen at depth, with mean annual lake-bottom temperatures of between 2.7 and 4 °C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In oceans, estuaries, and rivers, nitrification is an important nitrate source, and stable isotopes of nitrate are often used to investigate recycling processes (e.g. remineralisation, nitrification) in the water column. Nitrification is a two-step process, where ammonia is oxidised via nitrite to nitrate. Nitrite usually does not accumulate in natural environments, which makes it difficult to study the single isotope effect of ammonia oxidation or nitrite oxidation in natural systems. However, during an exceptional flood in the Elbe River in June 2013, we found a unique co-occurrence of ammonium, nitrite, and nitrate in the water column, returning towards normal summer conditions within 1 week. Over the course of the flood, we analysed the evolution of d15N-[NH4]+ and d15N-[NO2]- in the Elbe River. In concert with changes in suspended particulate matter (SPM) and d15N SPM, as well as nitrate concentration, d15N-NO3 - and d18O-[NO3] -, we calculated apparent isotope effects during net nitrite and nitrate consumption. During the flood event, > 97 % of total reactive nitrogen was nitrate, which was leached from the catchment area and appeared to be subject to assimilation. Ammonium and nitrite concentrations increased to 3.4 and 4.4 µmol/l, respectively, likely due to remineralisation, nitrification, and denitrification in the water column. d15N-[NH4]+ values increased up to 12 per mil, and d15N-[NO2]- ranged from -8.0 to -14.2 per mil. Based on this, we calculated an apparent isotope effect 15-epsilon of -10.0 ± 0.1 per mil during net nitrite consumption, as well as an isotope effect 15-epsilon of -4.0 ± 0.1 per mil and 18-epsilon of -5.3 ± 0.1 per mil during net nitrate consumption. On the basis of the observed nitrite isotope changes, we evaluated different nitrite uptake processes in a simple box model. We found that a regime of combined riparian denitrification and 22 to 36 % nitrification fits best with measured data for the nitrite concentration decrease and isotope increase.