4 resultados para Rischio finanziario, Value-at-Risk, Expected Shortfall

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze the effect of environmental uncertainties on optimal fishery management in a bio-economic fishery model. Unlike most of the literature on resource economics, but in line with ecological models, we allow the different biological processes of survival and recruitment to be affected differently by environmental uncertainties. We show that the overall effect of uncertainty on the optimal size of a fish stock is ambiguous, depending on the prudence of the value function. For the case of a risk-neutral fishery manager, the overall effect depends on the relative magnitude of two opposing effects, the 'convex-cost effect' and the 'gambling effect'. We apply the analysis to the Baltic cod and the North Sea herring fisheries, concluding that for risk neutral agents the net effect of environmental uncertainties on the optimal size of these fish stocks is negative, albeit small in absolute value. Under risk aversion, the effect on optimal stock size is positive for sufficiently high coefficients of constant relative risk aversion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Probabilistic climate data have become available for the first time through the UK Climate Projections 2009, so that the risk of tree growth change can be quantified. We assess the drought risk spatially and temporally using drought probabilities and tree species vulnerabilities across Britain. We assessed the drought impact on the potential yield class of three major tree species (Picea sitchensis, Pinus sylvestris, and Quercus robur) which presently cover around 59% (400,700 ha) of state-managed forests, across lowland and upland sites. Here we show that drought impacts result mostly in reduced tree growth over the next 80 years when using b1, a1b and a1fi IPCC emissions scenarios. We found a maximum reduction of 94% but also a maximum increase of 56% in potential stand yield class in the 2080s from the baseline climate (1961-1990). Furthermore, potential production over the national forest estate for all three species in the 2080s may decrease due to drought by 42% in the lowlands and 32% in the uplands in comparison to the baseline climate. Our results reveal that potential tree growth and forest production on the national forest estate in Britain is likely to reduce, and indicate where and when adaptation measures are required. Moreover, this paper demonstrates the value of probabilistic climate projections for an important economic and environmental sector.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing atmospheric carbon dioxide concentration alters the chemistry of the oceans towards more acidic conditions. Polar oceans are particularly affected due to their low temperature, low carbonate content and mixing patterns, for instance upwellings. Calcifying organisms are expected to be highly impacted by the decrease in the oceans' pH and carbonate ions concentration. In particular, sea urchins, members of the phylum Echinodermata, are hypothesized to be at risk due to their high-magnesium calcite skeleton. However, tolerance to ocean acidification in metazoans is first linked to acid-base regulation capacities of the extracellular fluids. No information on this is available to date for Antarctic echinoderms and inference from temperate and tropical studies needs support. In this study, we investigated the acid-base status of 9 species of sea urchins (3 cidaroids, 2 regular euechinoids and 4 irregular echinoids). It appears that Antarctic regular euechinoids seem equipped with similar acid-base regulation systems as tropical and temperate regular euechinoids but could rely on more passive ion transfer systems, minimizing energy requirements. Cidaroids have an acid-base status similar to that of tropical cidaroids. Therefore Antarctic cidaroids will most probably not be affected by decreasing seawater pH, the pH drop linked to ocean acidification being negligible in comparison of the naturally low pH of the coelomic fluid. Irregular echinoids might not suffer from reduced seawater pH if acidosis of the coelomic fluid pH does not occur but more data on their acid-base regulation are needed. Combining these results with the resilience of Antarctic sea urchin larvae strongly suggests that these organisms might not be the expected victims of ocean acidification. However, data on the impact of other global stressors such as temperature and of the combination of the different stressors needs to be acquired to assess the sensitivity of these organisms to global change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the period in question, large ice drifts transported incalculable numbers of icebergs, ice fields and ice floes from the Antarctica into the South Atlantic, confronting long-journeying sailing ships on the Cape Horn route with considerable danger. As is still the case today, the ice drifts generally tended in a northeasterly direction. Thus it can be assumed that the ice masses occuring near Cape Horn and in the South Atlantic originated in Graham Land and the South Shetland Islands, while those found in the Pacific will have come from Victoria Land. The masses drifting to Cape Horn, Isla de los Estados, the Falkland Islands and occasionally as far as the Tristan da Cunha Group are transported by the West Wind Drift and Falkland Current, diverted by the Brazil Current. The Bouvet and Agulhas Currents have little influence here. The great ice masses repeatedly reached points beyond the "outermost drift ice boundery" calculated in the course of the years, to continue on in the direction of the equator. The number of sailing ships which fell victim to the ice drifts while rounding Cape Horn can only be surmised; they simply disappeared without a trace in the expanses of the South Atlantic. Until the end of the 1900s the dangers presented by ice were less serious for westward-bound ships than for the "homeward-bounders" travelling from West to East. Following the turn of the century, however, the risk for "onwardbounders" increased significantly. Whether the ice drifts actually grew in might or whether the more frequent and more detailed reports led to this impression, could never be ascertained by the German Hydrographie Office. In the forty-one years between 1868 and 1908, ten light, ten medium and nine heavy ice years were counted, and only twelve years in which no reports of ice were submitted to the German Hydrographie Office. "One of the most terrible dangers threatening ships on their return from the Pacific Ocean," the pilot book for the Atlantic Ocean warns, "is the encounter with ice, to be expected south of the 50th parallel (approx.) in the Pacific and south of the 40th parallel (approx.) in the South Atlantic." Following the ice drift of 1854-55, thought to be the first ever recorded, the increasing numbers of sailing ships rounding Cape Horn were frequently confronted with drifts of varying sizes or with single icebergs. Then from 1892-94, a colossal ice drift crossed the path of the sailships in three stages. Several sailing ships collided with the icebergs and could be counted lucky if they survived with heavy damage to the bow and the fo regear. The reports on those which vanished for ever in the ice masses are hardly of investigative value. The English suffered particularly badly in the ice-plagued waters; their captains apparently sailed courses that led more freqently through drifts than did the sailing instructions of the German Hydrographic Office. Thus, among others, Capt. Jarvis' DUNTRUNE, also the STANMORE, ARTHURSTONE and LORD RANOCH as well as the French GALATHEE and CASHMERE all collided with icebergs. The crew of the AETHELBERTH panicked after a collision and took to their lifeboats. It was only after the ship detached itself from the iceberg it had rammed that the men returned to it and continued their journey. The TEMPLEMORE, on the other hand, had to be abandoned for good. Of the German sailing ships, the FLOTOW is to be mentioned here, and in the third phase of the drift the American SAN JOAQUIN lost a large proportion of its rigging. In the 20th century ice drifts continued to cross the courses of the Cape Horn ships. 1906 and 1908 were recorded as particularly heavy ice years. In 1908-09 both the FALKLANDBANK and the TOXTETH fell prey to ice, or so it was assumed during the subsequent Maritime Board proceedings. For the most part the German sailing ships were spared greater damages by sea. Their captains sent detailed ice reports to the German Hydrographic Office, which gratefully welcomed the information and partially incorporated it in the third and final edition of the "Pilot Book for the Atlantic Ocean." From the end of 1926 until the beginning of 1928, the last of the large sailing ships were once again confronted with "tremendous masses of icebergs and ice drifts." Reports of this period originated above all on the P-Liners PADUA, PAMIR, PASSAT, PEKING, PINNAS, PRIWALL and the ships of Gustav Erikson's fleet. The fate of the training sailship ADMIRAL KARPFANGER in connection with the ice in early 1938 was never clearly determined by the Maritime Board proceedings. Collision with an iceberg, however, is thought to be the most likely cause of accident. Today freight sailing ships no longer cross the oceans. The Cape Horn route is relatively insignificant for engine-powered ships and icebergs can be spotted in plenty of time by modern navigation technology ... The large ice drifts are no longer a menace, but only a marginal note in the final chapter of the history of transoceanic sailing.