9 resultados para Reproduction
em Publishing Network for Geoscientific
Resumo:
The worldwide effects of ocean acidification (OA) on marine species are a growing concern. In temperate coastal seas, seaweeds are dominant primary producers that create complex habitats and supply energy to higher trophic levels. Studies on OA and macroalgae have focused on calcifying species and adult stages but, critically, they have overlooked the microscopic stages of the reproductive life cycle, which, for other anthropogenic stress e.g. UV-B radiation, are the most susceptible life-history phase. Also, environmental cues and stressors can cause changes in the sex ratio which has implications for the mating system and recruitment success. Here, we report the effects of pH (7.59-8.50) on meiospore germination and sex determination for the giant kelp, Macrocystis pyrifera (Laminariales), in the presence and absence of additional dissolved inorganic carbon (DIC). Lowered pH (7.59-7.60, using HCl-only) caused a significant reduction in germination, while added DIC had the opposite effect, indicating that increased CO2 at lower pH ameliorates physiological stress. This finding also highlights the importance of appropriate manipulation of seawater carbonate chemistry when testing the effects of ocean acidification on photosynthetic organisms. The proportion of male to female gametophytes did not vary significantly between treatments suggesting that pH was not a primary environmental modulator of sex. Relative to the baseline (pH 8.19), gametophytes were 32% larger under moderate OA (pH 7.86) compared to their size (10% increase) under extreme OA (pH 7.61). This study suggests that metabolically-active cells can compensate for the acidification of seawater. This homeostatic function minimises the negative effects of lower pH (high H+ ions) on cellular activity. The 6-9% reduction in germination success under extreme OA suggests that meiospores of M.pyrifera may be resistant to future ocean acidification.
Resumo:
Seaweeds are key species of the Baltic Sea benthic ecosystems. They are the substratum of numerous fouling epibionts like bryozoans and tubeworms. Several of these epibionts bear calcified structures and could be impacted by the high pCO2 events of the late summer upwellings in the Baltic nearshores. Those events are expected to increase in strength and duration with global change and ocean acidification. If calcifying epibionts are impacted by transient acidification as driven by upwelling events, their increasing prevalence could cause a shift of the fouling communities toward fleshy species. The aim of the present study was to test the sensitivity of selected seaweed macrofoulers to transient elevation of pCO2 in their natural microenvironment, i.e. the boundary layer covering the thallus surface of brown seaweeds. Fragments of the macroalga Fucus serratus bearing an epibiotic community composed of the calcifiers Spirorbis spirorbis (Annelida) and Electra pilosa (Bryozoa) and the non-calcifier Alcyonidium hirsutum (Bryozoa) were maintained for 30 days under three pCO2 conditions: natural 460±59 µatm, present-day upwelling1193±166 µatm and future upwelling 3150±446 µatm. Only the highest pCO2 caused a significant reduction of growth rates and settlement of S. spirorbis individuals. Additionally, S. spirorbis settled juveniles exhibited enhanced calcification of 40% during daylight hours compared to dark hours, possibly reflecting a day-night alternation of an acidification-modulating effect by algal photosynthesis as opposed to an acidification-enhancing effect of algal respiration. E. pilosa colonies showed significantly increased growth rates at intermediate pCO2 (1193 µatm) but no response to higher pCO2. No effect of acidification on A. hirsutum colonies growth rates was observed. The results suggest a remarkable resistance of the algal macro-epibionts to levels of acidification occurring at present day upwellings in the Baltic. Only extreme future upwelling conditions impacted the tubeworm S. spirorbis, but not the bryozoans.
Resumo:
Differences in the sensitivity of marine species to ocean acidification will influence the structure of marine communities in the future. Reproduction is critical for individual and population success, yet is energetically expensive and could be adversely affected by rising CO2 levels in the ocean. We investigated the effects of projected future CO2 levels on reproductive output of two species of coral reef damselfish, Amphiprion percula and Acanthochromis polyacanthus. Adult breeding pairs were maintained at current-day control (446 µatm), moderate (652 µatm) or high CO2 (912 µatm) for a 9-month period that included the summer breeding season. The elevated CO2 treatments were consistent with CO2 levels projected by 2100 under moderate (RCP6) and high (RCP8) emission scenarios. Reproductive output increased in A. percula, with 45-75 % more egg clutches produced and a 47-56 % increase in the number of eggs per clutch in the two elevated CO2 treatments. In contrast, reproductive output decreased at high CO2 in Ac. polyacanthus, with approximately one-third as many clutches produced compared with controls. Egg survival was not affected by CO2 for A. percula, but was greater in elevated CO2 for Ac. polyacanthus. Hatching success was also greater for Ac. polyacanthus at elevated CO2, but there was no effect of CO2 treatments on offspring size. Despite the variation in reproductive output, body condition of adults did not differ between control and CO2 treatments in either species. Our results demonstrate different effects of high CO2 on fish reproduction, even among species within the same family. A greater understanding of the variation in effects of ocean acidification on reproductive performance is required to predict the consequences for future populations of marine organisms.
Resumo:
Reproduction in many organisms can be disrupted by changes to the physical environment, such as those predicted to occur during climate change. Marine organisms face the dual climate change threats of increasing temperature and ocean acidification, yet no studies have examined the potential interactive effects of these stressors on reproduction in marine fishes. We used a long-term experiment to test the interactive effects of increased temperature and CO2 on the reproductive performance of the anemonefish, Amphiprion melanopus. Adult breeding pairs were kept for 10 months at three temperatures, 28.5°C (+0.0°C), 30.0°C (+1.5°C) and 31.5°C (+3.0°C), cross-factored with 3 CO2 levels, a current day control (417 µatm) and moderate (644 µatm) and high (1134 µatm) treatments consistent with the range of CO2 projections for the year 2100 under RCP8.5. We recorded each egg clutch produced during the breeding season, the number of eggs laid per clutch, average egg size, fertilization success, survival to hatching, hatchling length and yolk provisioning. Adult body condition, hepatosomatic index, gonadosomatic index, and plasma 17beta-estradiol concentrations were measured at the end of the breeding season to determine the effect of prolonged exposure to increased temperature and elevated CO2 on adults, and to examine potential physiological mechanisms for changes in reproduction. Temperature had by far the stronger influence on reproduction, with clear declines in reproduction occurring in the +1.5°C treatment and ceasing altogether in the +3.0°C treatment. In contrast, CO2 had a minimal effect on the majority of reproductive traits measured, but caused a decline in offspring quality in combination with elevated temperature. We detected no significant effect of temperature or CO2 on adult body condition or hepatosomatic index. Elevated temperature had a significant negative effect on plasma 17beta-estradiol concentrations, suggesting that declines in reproduction with increasing temperature were due to the thermal sensitivity of reproductive hormones rather than a reduction in energy available for reproduction. Our results show that elevated temperature exerts a stronger influence than high CO2 on reproduction in A. melanopus. Understanding how these two environmental variables interact to affect the reproductive performance of marine organisms will be important for predicting the future impacts of climate change.
Resumo:
Some planktonic groups suffer negative effects from ocean acidification (OA), although copepods might be less sensitive. We investigated the effect of predicted CO2 levels (range 480-750 ppm), on egg production and hatching success of two copepod species, Centropages typicus and Temora longicornis. In these short-term incubations there was no significant effect of high CO2 on these parameters. Additionally a very high CO2 treatment, (CO2 = 9830 ppm), representative of carbon capture and storage scenarios, resulted in a reduction of egg production rate and hatching success of C. typicus, but not T. longicornis. In conclusion, reproduction of C. typicus was more sensitive to acute elevated seawater CO2 than that of T. longicornis, but neither species was affected by exposure to CO2 levels predicted for the year 2100. The duration and seasonal timing of exposures to high pCO2, however, might have a significant effect on the reproduction success of calanoid copepods.
Resumo:
Ocean acidification is predicted to negatively impact the reproduction of many marine species, either by reducing fertilization success or diverting energy from reproductive effort. While recent studies have demonstrated how ocean acidification will affect larval and juvenile fishes, little is known about how increasing partial pressure of carbon dioxide (pCO2) and decreasing pH might affect reproduction in adult fishes. We investigated the effects of near-future levels of pCO2 on the reproductive performance of the cinnamon anemonefish, Amphiprion melanopus, from the Great Barrier Reef, Australia. Breeding pairs were held under three CO2 treatments [Current-day Control (430 µatm), Moderate (584 µatm) and High (1032 µatm)] for a 9-month period that included the summer breeding season. Unexpectedly, increased CO2 dramatically stimulated breeding activity in this species of fish. Over twice as many pairs bred in the Moderate (67% of pairs) and High (55%) compared to the Control (27%) CO2 treatment. Pairs in the High CO2 group produced double the number of clutches per pair and 67% more eggs per clutch compared to the Moderate and Control groups. As a result, reproductive output in the High group was 82% higher than that in the Control group and 50% higher than that in the Moderate group. Despite the increase in reproductive activity, there was no difference in adult body condition among the three treatment groups. There was no significant difference in hatchling length between the treatment groups, but larvae from the High CO2 group had smaller yolks than Controls. This study provides the first evidence of the potential effects of ocean acidification on key reproductive attributes of marine fishes and, contrary to expectations, demonstrates an initially stimulatory (hormetic) effect in response to increased pCO2. However, any long-term consequences of increased reproductive effort on individuals or populations remain to be determined.
Data collection of Calanus finmarchicus reproduction life history traits in the North Atlantic Ocean
Resumo:
Observations of egg production rates (EPR) for female Calanus finmarchicus were compared from different regions of the North Atlantic. The regions were diverse in size and sampling frequency, ranging from a fixed time series station in the Lower St Lawrence Estuary, off Rimouski, where nearly 200 experiments were carried out between May and December from 1994 to 2006, to a large-scale survey in the Northern Norwegian Sea, where about 50 experiments were carried out between April and June from 2002 to 2004. For this analysis the stations were grouped mostly along geographic lines, with only limited attention being paid to oceanographic features. There is some overlap between regions, however, where stations were sometimes kept together when they were sampled on the same cruise. As well some stations other than off Rimouski were occupied more than once during different years and/or in different seasons.
Resumo:
Although anthropogenic infuences such as global warming, overfishing, and eutrophication may contribute to jellyfish blooms, little is known about the effects of ocean acidification on jellyfish. Most medusae form statoliths of calcium sulfate hemihydrate that are components of their balance organs (statocysts). This study was designed to test the effects of pH (7.9, within the average current range, 7.5, expected by 2100, and 7.2, expected by 2300) combined with two temperatures (9 and 15°C) on asexual reproduction and statolith formation of the moon jellyfish, Aurelia labiata. Polyp survival was 100% after 122 d in seawater in all six temperature and pH combinations. Because few polyps at 9°C strobilated, and temperature effects on budding were consistent with published results, we did not analyze data from those three treatments further. At 15°C, there were no significant effects of pH on the numbers of ephyrae or buds produced per polyp or on the numbers of statoliths per statocyst; however, statolith size was signi?cantly smaller in ephyrae released from polyps reared at low pH. Our results indicate that A. labiata polyps are quite tolerant of low pH, surviving and reproducing asexually even at the lowest tested pH; however, the effects of small statoliths on ephyra fitness are unknown. Future research on the behavior of ephyrae with small statoliths would further our understanding of how ocean acidi?cation may affect jellyfish survival in nature.