19 resultados para Regulatory fragmentation
em Publishing Network for Geoscientific
Resumo:
We present Plio-Pleistocene records of sediment color, %CaCO3, foraminifer fragmentation, benthic carbon isotopes (d13C) and radiogenic isotopes (Sr, Nd, Pb) of the terrigenous component from IODP Site U1313, a reoccupation of benchmark subtropical North Atlantic Ocean DSDP Site 607. We show that (inter)glacial cycles in sediment color and %CaCO3 pre-date major northern hemisphere glaciation and are unambiguously and consistently correlated to benthic oxygen isotopes back to 3.3 million years ago (Ma) and intermittently so probably back to the Miocene/Pliocene boundary. We show these lithological cycles to be driven by enhanced glacial fluxes of terrigenous material (eolian dust), not carbonate dissolution (the classic interpretation). Our radiogenic isotope data indicate a North American source for this dust (~3.3-2.4 Ma) in keeping with the interpreted source of terrestrial plant wax-derived biomarkers deposited at Site U1313. Yet our data indicate a mid latitude provenance regardless of (inter)glacial state, a finding that is inconsistent with the biomarker-inferred importance of glaciogenic mechanisms of dust production and transport. Moreover, we find that the relation between the biomarker and lithogenic components of dust accumulation is distinctly non-linear. Both records show a jump in glacial rates of accumulation from Marine Isotope Stage, MIS, G6 (2.72 Ma) onwards but the amplitude of this signal is about 3-8 times greater for biomarkers than for dust and particularly extreme during MIS 100 (2.52 Ma). We conclude that North America shifted abruptly to a distinctly more arid glacial regime from MIS G6, but major shifts in glacial North American vegetation biomes and regional wind fields (exacerbated by the growth of a large Laurentide Ice Sheet during MIS 100) likely explain amplification of this signal in the biomarker records. Our findings are consistent with wetter-than-modern reconstructions of North American continental climate under the warm high CO2 conditions of the Early Pliocene but contrast with most model predictions for the response of the hydrological cycle to anthropogenic warming over the coming 50 years (poleward expansion of the subtropical dry zones).
Resumo:
A high-resolution record of foraminiferal fragmentation (a dissolution indicator) for the last 250 k.y. (isotopic Stages 1 to 7) is identified in the upper 61.9 m of Ocean Drilling Program (ODP) Hole 828A, west Vanuatu. This record is comparable in detail to the atmospheric CO2 record and the d18O stack. Phase shifts between preservation spikes and maximum ice volumes (d18O of Globigerinoides sacculifer) are analogous to those on Ontong Java Plateau. Mass spectrometer (AMS14C) dating of a sample taken at the base of dissolution cycle B1 and the position of the last glacial maximum indicates a lag in time of ~8 k.y. in the Vanuatu region for the last glacial termination. When dissolution spikes are compared with minimum ice volumes there is no phase shift for the last two glacial terminations. The difference between Vanuatu and Ontong Java Plateau may be explained by local CO2 sinks and the interplay between intermediate and deep water masses. Terrigenous input increasingly affected sediment of Hole 828A on the North d'Entrecasteaux Ridge (NDR) as it approached Espiritu Santo Island. Mud and silt suspended in mid-water flows become important after 125 ka, while turbidites bypass the New Hebrides Trench only towards the last glacial maximum (LGM). Terrigenous supply seems to affect the lysocline profile that changed from an "open ocean" to a "near continent" type, thus favoring dissolution. Fragmentation of planktonic foraminifers is a more sensitive indicator of lysocline variations than is foraminiferal susceptibility to dissolution, the foraminiferal dissolution index, the abundance of benthic foraminifers, or CaCO3 content. A modern foraminiferal lysocline for the neighboring area (between 10°S and 30°S, and 160°E and 180°E) is found at 3.1 km below sea level, compared to west Vanuatu where it is shallower. The past lysocline level was deeper than 3086 m during intervals of dissolution minima, and ranged from ~2550 to 3000 m during intervals of dissolution maxima. The high sedimentation rates (in the order of 10 to 50 cm/k.y.) found in Hole 828A offer a great potential for future high-resolution studies either in this hole or other western localities along the NDR. Areas of high sedimentation near continental regions have been discarded for paleoceanographic and/or paleoclimatic studies. Nonetheless, conditions analogous to those found in Hole 828A are expected to occur in many trench areas around the world where mid-water flows have preserved as yet undiscovered fine high-resolution sedimentary records.
Resumo:
Early diagenetic ultrastructural alterations of benthic foraminifers of the genera Elphidium and Ophthalmina from the shallow water sediments of the Kiel Bight were investigated by scanning electron microscopy. Pure solution patterns were deduced from supplementary experiments.//Several carbonate destroying processes can be specified by ultrastructural patterns of the shell surfaces. Based on these patterns three zones are established, each showing different mechanisms of shell fragmentation: 1) zone of abrasion, 2) zone of disintegration, 3) zone of corrosion. This zonation depends on the water depth and is caused primarily by water agitation and by under saturation of the bottom water with respect to carbonate.
Resumo:
The tissue distribution and ontogeny of Na+/K+-ATPase has been examined as an indicator for ion-regulatory epithelia in whole animal sections of embryos and hatchlings of two cephalopod species: the squid Loligo vulgaris and the cuttlefish Sepia officinalis. This is the first report of the immunohistochemical localization of cephalopod Na+/K+-ATPase with the polyclonal antibody alpha (H-300) raised against the human alpha1-subunit of Na+/K+-ATPase. Na+/K+-ATPase immunoreactivity was observed in several tissues (gills, pancreatic appendages, nerves), exclusively located in baso-lateral membranes lining blood sinuses. Furthermore, large single cells in the gill of adult L. vulgaris specimens closely resembled Na+/K+-ATPase-rich cells described in fish. Immunohistochemical observations indicated that the amount and distribution of Na+/K+-ATPase in late cuttlefish embryos was similar to that found in juvenile and adult stages. The ion-regulatory epithelia (e.g., gills, excretory organs) of the squid embryos and paralarvae exhibited less differentiation than adults. Na+/K+-ATPase activities for whole animals were higher in hatchlings of S. officinalis (157.0 ± 32.4 µmol/g FM/h) than in those of L. vulgaris (31.8 ± 3.3 µmol/g FM/h). S. officinalis gills and pancreatic appendages achieved activities of 94.8 ± 18.5 and 421.8 ± 102.3 µmol ATP/g FM/h, respectively. High concentrations of Na+/K+-ATPase in late cephalopod embryos might be important in coping with the challenging abiotic conditions (low pH, high pCO2) that these organisms encounter inside their eggs. Our results also suggest a higher sensitivity of squid vs. cuttlefish embryos to environmental acid-base disturbances.