399 resultados para Reflectance spectra
em Publishing Network for Geoscientific
Resumo:
Reflectance spectra collected during ODP Leg 172 were used in concert with solid phase iron chemistry, carbonate content, and organic carbon content measurements to evaluate the agents responsible for setting the color in sediments. Factor analysis has proved a valuable and rapid technique to detect the local and regional primary factors that influence sediment color. On the western North Atlantic drifts, sediment color is the result of primary mineralogy as well as diagenetic changes. Sediment lightness is controlled by the carbonate content while the hue is primarily due to the presence of hematite and Fe2+/Fe3+ changes in clay minerals. Hematite, most likely derived from the Permo-Carboniferous red beds of the Canadian Maritimes, is differentially preserved at various sites due to differences in reductive diagenesis and dilution by other sedimentary components. Various intensities for diagenesis result from changes in organic carbon content, sedimentation rates, and H2S production via anaerobic methane oxidation. Iron monosulfides occur extensively at all high sedimentation sites especially in glacial periods suggesting increased high terrigenous flux and/or increased reactive iron flux in glacials.
Resumo:
Visual-domain diffuse reflectance data collected aboard the JOIDES Resolution with the Minolta spectrometer CM-2002 during Ocean Drilling Program Leg 172 have been used to estimate successfully the carbonate content of sediments. Calibration equations were developed for each site and for each lithostratigraphic unit (or subunit at Site 1063) using multiple linear regression on raw as well as pretreated reflectance spectra (i.e., first-order derivation and squaring of raw reflectance spectra) for a total of 4141 direct carbonate measurements. The root-mean-square errors of 4% to 7% are within the range of previous estimates using diffuse reflectance data and are acceptable for the general extensive range of carbonate contents (i.e., 0-70 wt%) that characterize sedimentation at Leg 172 sites.
Resumo:
As the length of marine cores increases and sampling intervals decrease, the need for rapid and inexpensive means of determining sediment composition has become apparent. In this study we examine one potentially useful technique for assessing compositional changes in marine cores, diffuse reflectance spectrophotometry. We examined near-ultraviolet, visible, and near-infrared reflectance spectra from five data sets. Each data set consists of calibration samples and test samples. The calibration samples' spectra were related to a sediment component using multiple linear regression. The resulting regression or calibration equations were then evaluated using the test samples. Calibration equations were written relating spectra to several sediment components incduding carbonate (Atlantic and east Pacific Rise ODP Site 847), organic carbon content (Atlantic and east Pacific Rise), and opal content (east Pacific Rise). The correlation coefficients for the regression equations ranged from a high of 0.99 for carbonate and opal at ODP Site 847 to a low of 0.97 for Atlantic carbonate indicating that spectral variations are highly correlated to sediment composition. All of the equations include a substantial number of variables from shorter visible and longer near ultraviolet wavelengths suggesting that these wavelengths are especially important for devices designed specifically to scan marine cores. Although equations for estimating organic and carbonate content appear independent of other sediment components, the opal equation is strongly dependent on carbonate content indicating that opal concentration is correlated to carbonate content. Tests of the calibration equations indicated that all our equations reasonably estimate the pattern of changes, either down core or in surface sediments. Where our spectral estimates have difficulty is with absolute values, frequently over or underestimating observed values by a substantial amount. Within these limitations diffuse reflectance spectrophotometry can be a useful tool for characterizing marine cores and as our understanding of the relationship between spectra and mineralogy improves so will estimates of absolute values.
Resumo:
During Ocean Drilling Program Leg 199 in the equatorial Pacific, visible and near-infrared spectroscopy (VNIS) was used to measure the reflectance spectra (350-2500 nm) of 1343 sediment samples. Reflectance spectra were also measured for a suite of 60 samples of known mineralogy, thereby providing a local ground-truth calibration of spectral features to percentages of calcite, opal, smectite, and illite. The associated algorithm was used to calculate mineral percentages from the 1343 spectra. Using multiple regression and VNIS mineralogy, multisensor track physical properties and light spectroscopy data were then converted into continuous high-resolution mineralogy logs.