6 resultados para Record conversion

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Late Quaternary sediments of the Japan Sea are characterized by centimeter- to meter-scale alternations of dark and light layers which are synchronous basinwide. High-resolution analyses of the sediments from Ocean Drilling Program site 797 reveal that deposition of the meter-scale alternations reflect variations in paleoceanographic conditions which were closely associated with glacio-eustatic sea level changes through the modulation of the volume and character of the influx to the sea through the Tsushima Strait. The centimeter- to decimeter-scale alternations reflect millennial-scale variations which are possibly associated with Dansgaard-Oeschger (D-O) cycles, with each dark layer appearing to correspond to an interstadial. This variability is attributed to the development of a humid climate in central to eastern Asia and the consequent increase in discharge from the Huanghe and Changjiang Rivers during interstadials. This caused expansion of the East China Sea coastal water (ECSCW), which penetrated more strongly into the Japan Sea. The increased influence of the lower-salinity, nutrient-enriched ECSCW reduced deep water ventilation and enhanced the surface productivity, leading to the development of anoxic bottom waters and deposition of the dark layers. Thus the centimeter- to decimeter-scale alternations of the dark and light layers record wet and dry cycles in central to eastern Asia possibly associated with D-O cycles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Benthic (Uvigerina spp., Cibicidoides spp., Gyroidinoides spp.) and planktonic (N. pachyderma sinistral, G. bulloides) stable isotope records from three core sites in the central Gulf of Alaska are used to infer mixed-layer and deepwater properties of the late glacial Subarctic Pacific. Glacial-interglacial amplitudes of the planktonic delta18O records are 1.1-1.3 per mil, less than half the amplitude observed at core sites at similar latitudes in the North Atlantic; these data imply that a strong, negative deltaw anomaly existed in the glacial Subarctic mixed layer during the summer, which points to a much stronger low-salinity anomaly than exists today. If true, the upper water column in the North Pacific would have been statically more stable than today, thus suppressing convection even more efficiently. This scenario is further supported by vertical (i.e., planktic versus benthic) delta18O and delta13C gradients of >1 per mil, which suggest that a thermohaline link between Pacific deep waters and the Subarctic Pacific mixed layer did not exist during the late glacial. Epibenthic delta13C in the Subarctic Pacific is more negative than at tropical-subtropical Pacific sites but similar to that recorded at Southern Ocean sites, suggesting ventilation of the deep central Pacific from mid-latitude sources, e.g., from the Sea of Japan and Sea of Okhotsk. Still, convection to intermediate depths could have occurred in the Subarctic during the winter months when heat loss to the atmosphere, sea ice formation, and wind-driven upwelling of saline deep waters would have been most intense. This would be beyond the grasp of our planktonic records which only document mixed-layer temperature-salinity fields extant during the warmer seasons. Also we do not have benthic isotope records from true intermediate water depths of the Subarctic Pacific.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The conversion of surface water to deep water in the North Atlantic results in the release of heat from the ocean to the atmosphere, which may have amplified millennial-scale climate variability during glacial times (Broecker et al., 1990, doi:10.1029/PA005i004p00469) and could even have contributed to the past 11,700 years of relatively mild climate (known as the Holocene epoch) (Bond et al., 2001, doi:10.1126/science.1065680; Alley et al., 1997, doi:10.1130/0091-7613(1997)025<0483:HCIAPW>2.3.CO;2; Keigwin and Boyle, 2000, doi:10.1073/pnas.97.4.1343). Here we investigate changes in the carbon-isotope composition of benthic foraminifera throughout the Holocene and find that deep-water production varied on a centennial-millennial timescale. These variations may be linked to surface and atmospheric events that hint at a contribution to climate change over this period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Benthic foraminiferal assemblages and the carbon isotope composition of the epifaunal benthic foraminifera Epistominella exigua and Fontbotia wuellerstorfi have been investigated along core MD02-2589 located at the southern Agulhas Plateau (41°26.03'S, 25°15.30'E, 2660 m water depth). This study aims to evaluate changes in the benthic paleoenvironment and its influence on benthic d13C with a notable focus on E. exigua, a species associated with phytodetritus deposits and poorly studied in isotope paleoceanographic reconstructions. The benthic foraminiferal assemblages (>63 µm) show large fluctuations in species composition suggesting significant changes in the pattern of ocean surface productivity conceivably related to migrations of the Subtropical Convergence (STC) and Subantarctic Front (SAF). Low to moderate seasonality and relatively higher food supply to the seafloor are indicated during glacial marine isotope stages (MIS) 6, 4, and 2 and during MIS 3, probably associated with the northward migration of the SAF and confluence with the more stationary STC above the southern flank of the Agulhas Plateau. The lowest organic carbon supply to the seafloor is indicated from late MIS 5b to MIS 4 as a consequence of increased influence of the Agulhas Front (AF) and/or weakening of the influence of the STC over the region. Episodic delivery of fresh organic matter, similar to modern conditions at the core location, is indicated during MIS 5c-MIS 5e and at Termination I. Comparison of this paleoenvironmental information with the paired d13C records of E. exigua and F. wuellerstorfi suggests that organic carbon offsets d13C of E. exigua from ambient bottom water d13CDIC, while its d13C amplitude, on glacial-interglacial timescales, does not seem affected by changes of organic carbon supply to the seafloor. This suggests that this species calcifies preferentially during the short time span of the year when productivity peaks and phytodetritus is delivered to the seafloor. Therefore E. exigua, while offset from d13CDIC, potentially more faithfully records the amplitude of ambient bottom water d13CDIC changes than F. wuellerstorfi, notably in settings such as the Southern Ocean that experienced substantial changes through time in the organic carbon supply to the seafloor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stable isotopic analyses of Middle Miocene to Quaternary foraminiferal calcite from east equatorial and central north Pacific DSDP cores have provided much new informatlon on the paleoceanography of the Pacific Neogene The history of delta18O change in planktonic foraminifera reflects the changing Isotopic composition and temperature of seawater at the time of test formation. Changes in the isotopic composition of benthonic foraminifera largely reflect changes m the volume of continental ice. Isotopic data from these cores indicates the following sequence of events related to continental glaciation (1) A permanent Antarctic ice sheet developed late in the Middle Miocene (about 13 to 11.5 m.y. ago) (2) The Late Miocene (about 11.5 to 5 m.y. ago) is marked by significant variation in delta18O of about 0.5? throughout, indicating instability of Antarctic ice cap size or bottom-water temperatures (3) The early Pliocene (5 to about 3 m.y. ago) was a time of relative stability in ice volume and bottom-water temperature (4) Growth of permanent Northern Hemisphere ice sheets is referred to have begun about 3 m.y. ago (5) The late Pliocene (3 to about 1.8 m.y. ago) is marked by one major glaciation or bottom-water cooling dated between about 2.1 to 2.3 m.y. (6) There is some evidence that the frequency of glacial-interglacial cycles increased at about 0.9 m.y. There is significant variation in delta13C at these sites but no geochemical interpretation is offered in this paper. The most outstanding feature of delta13C results is a permanent shift of about -0.8? found at about 6.5 m.y. in east equatorial and central north Pacific benthonic foraminifera. This benthonic carbon shift may form a useful marker in deep-sea cores recovering Late Miocene carbonates.