2 resultados para Real-world problem

em Publishing Network for Geoscientific


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Metamodels have proven be very useful when it comes to reducing the computational requirements of Evolutionary Algorithm-based optimization by acting as quick-solving surrogates for slow-solving fitness functions. The relationship between metamodel scope and objective function varies between applications, that is, in some cases the metamodel acts as a surrogate for the whole fitness function, whereas in other cases it replaces only a component of the fitness function. This paper presents a formalized qualitative process to evaluate a fitness function to determine the most suitable metamodel scope so as to increase the likelihood of calibrating a high-fidelity metamodel and hence obtain good optimization results in a reasonable amount of time. The process is applied to the risk-based optimization of water distribution systems; a very computationally-intensive problem for real-world systems. The process is validated with a simple case study (modified New York Tunnels) and the power of metamodelling is demonstrated on a real-world case study (Pacific City) with a computational speed-up of several orders of magnitude.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Visual cluster analysis provides valuable tools that help analysts to understand large data sets in terms of representative clusters and relationships thereof. Often, the found clusters are to be understood in context of belonging categorical, numerical or textual metadata which are given for the data elements. While often not part of the clustering process, such metadata play an important role and need to be considered during the interactive cluster exploration process. Traditionally, linked-views allow to relate (or loosely speaking: correlate) clusters with metadata or other properties of the underlying cluster data. Manually inspecting the distribution of metadata for each cluster in a linked-view approach is tedious, specially for large data sets, where a large search problem arises. Fully interactive search for potentially useful or interesting cluster to metadata relationships may constitute a cumbersome and long process. To remedy this problem, we propose a novel approach for guiding users in discovering interesting relationships between clusters and associated metadata. Its goal is to guide the analyst through the potentially huge search space. We focus in our work on metadata of categorical type, which can be summarized for a cluster in form of a histogram. We start from a given visual cluster representation, and compute certain measures of interestingness defined on the distribution of metadata categories for the clusters. These measures are used to automatically score and rank the clusters for potential interestingness regarding the distribution of categorical metadata. Identified interesting relationships are highlighted in the visual cluster representation for easy inspection by the user. We present a system implementing an encompassing, yet extensible, set of interestingness scores for categorical metadata, which can also be extended to numerical metadata. Appropriate visual representations are provided for showing the visual correlations, as well as the calculated ranking scores. Focusing on clusters of time series data, we test our approach on a large real-world data set of time-oriented scientific research data, demonstrating how specific interesting views are automatically identified, supporting the analyst discovering interesting and visually understandable relationships.