24 resultados para Ratio bias effect

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seamounts are of great interest to science, industry and conservation because of their potential role as 'stirring rods' of the oceans, their enhanced productivity, their high local biodiversity, and the growing exploitation of their natural resources. This is accompanied by rising concern about the threats to seamount ecosystems, e.g. through over-fishing and the impact of trawling. OASIS described the functioning characteristics of seamount ecosystems. OASIS' integrated hydrographic, biogeochemical and biological information. Based on two case studies. The scientific results, condensed in conceptual and mass balanced ecosystem models, were applied to outline a model management plan as well as site-specific management plans for the seamounts investigated. OASIS addressed five main objectives: Objective 1: To identify and describe the physical forcing mechanisms effecting seamount systems Objective 2: To assess the origin, quality and dynamics of particulate organic material within the water column and surface sediment at seamounts. Objective 3: To describe aspects of the biodiversity and the ecology of seamount biota, to assess their dynamics and the maintenance of their production. Objective 4: Modelling the trophic ecology of seamount ecosystems. Objective 5: Application of scientific knowledge to practical conservation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Little is known concerning the effect of CO2 on phytoplankton ecophysiological processes under nutrient and trace element-limited conditions, because most CO2 manipulation experiments have been conducted under elements-replete conditions. To investigate the effects of CO2 and iron availability on phytoplankton ecophysiology, we conducted an experiment in September 2009 using a phytoplankton community in the iron limited, high-nutrient, low-chlorophyll (HNLC) region of the Bering Sea basin . Carbonate chemistry was controlled by the bubbling of the several levels of CO2 concentration (180, 380, 600, and 1000 ppm) controlled air, and two iron conditions were established, one with and one without the addition of inorganic iron. We demonstrated that in the iron-limited control conditions, the specific growth rate and the maximum photochemical quantum efficiency (Fv/Fm) of photosystem (PS) II decreased with increasing CO2 levels, suggesting a further decrease in iron bioavailability under the high-CO2 conditions. In addition, biogenic silica to particulate nitrogen and biogenic silica to particulate organic carbon ratios increased from 2.65 to 3.75 and 0.39 to 0.50, respectively, with an increase in the CO2 level in the iron-limited controls. By contrast, the specific growth rate, Fv/Fm values and elemental compositions in the iron-added treatments did not change in response to the CO2 variations, indicating that the addition of iron canceled out the effect of the modulation of iron bioavailability due to the change in carbonate chemistry. Our results suggest that high-CO2 conditions can alter the biogeochemical cycling of nutrients through decreasing iron bioavailability in the iron-limited HNLC regions in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analysis of pelagic clay samples from Sites 576, 578, and 581 shows that physical, acoustic, and electrical trends with increasing burial depth are related to mineralogical and diagenetic changes. The properties of interest are bulk density (roo), porosity (phi), compressional-wave velocity (Vp) and velocity anisotropy (Ap), and electrical resistivity (Ro) and resistivity anisotropy (Ar). In general, as demonstrated in particular for the brown pelagic clay, the increase in roo, Vp, Ro, and to a lesser extent Ap and Ar with increasing depth is primarily caused by decreasing phi (and water content) as a result of compaction. The mineralogy and chemistry of the pelagic clays vary as a function of burial depth at all three sites. These variations are interpreted to reflect changes in the relative importance of detrital and diagenetic components. Mineralogical and chemical variations, however, play minor roles in determining variations in acoustic and electrical properties of the clays with increasing burial depth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The operator effect is a well-known methodological bias already quantified in some taphonomic studies. However, the replicability effect, i.e., the use of taphonomic attributes as a replicable scientific method, has not been taken into account to the present. Here, we quantified for the first time this replicability bias using different multivariate statistical techniques, testing if the operator effect is related to the replicability effect. We analyzed the results reported by 15 operators working on the same dataset. Each operator analyzed 30 biological remains (bivalve shells) from five different sites, considering the attributes fragmentation, edge rounding, corrasion, bioerosion and secondary color. The operator effect followed the same pattern reported in previous studies, characterized by a worse correspondence for those attributes having more than two levels of damage categories. However, the effect did not appear to have relation with the replicability effect, because nearly all operators found differences among sites. Despite the binary attribute bioerosion exhibited 83% of correspondence among operators it was the taphonomic attributes that showed the highest dispersion among operators (28%). Therefore, we conclude that binary attributes (despite showing a reduction of the operator effect) diminish replicability, resulting in different interpretations of concordant data. We found that a variance value of nearly 8% among operators, was enough to generate a different taphonomic interpretation, in a Q-mode cluster analysis. The results reported here showed that the statistical method employed influences the level of replicability and comparability of a study and that the availability of results may be a valid alternative to reduce bias.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rising anthropogenic CO2 in the surface ocean has raised serious concerns for the ability of calcifying organisms to secrete their shells and skeletons. Previous mollusc carbonate perturbation experiments report deleterious effects at lowered pH (7.8-7.4 pH units), including reduced shell length and thickness and deformed shell morphology. It is not clear whether the reduced shell growth results from a decrease in calcification rate due to lowered aragonite saturation or from an indirect effect on mollusc metabolism. We take a novel approach to discerning between these two processes by examining the impact of lowered pH on the 'vital-effect' associated with element ratios. Reported herein are the first element ratio (Sr/Ca, Ba/Ca, B/Ca, Mg/Ca and Mn/Ca) profiles throughout the larval life stage of Mytilus edulis. Element ratio data for individuals reared in ambient conditions provide new insights into biomineralization during larval development. Sr/Ca ratios are consistent with Sr incorporation in the mineral phase. Mg and Mn are likely hosted in an organic phase. The Ba partition coefficient of early larval shells is one of the highest reported in biogenic aragonite. The reason for the high Ba concentrations is unknown, but may reflect the assimilation of Ba from food and/or Ba concentration in an organic or amorphous carbonate phase. There is no observable difference in the way the studied elements are incorporated into the shells of individuals reared in ambient and lowered pH conditions. The reduced growth rate at lower pH may be a consequence of a disruption to the larval mollusc metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Opal accumulation rates in sediments have been used as a proxy for carbon flux, but there is poor understanding of the factors that regulate the Si quota of diatoms. Natural variation in silicon isotopes (delta.lc.gif - 54 Bytes30Si) in diatom frustules recovered from sediment cores are an alternative to opal mass for reconstructing diatom Si use and potential C export over geological timescales. Understanding the physiological factors that may influence the Si quota and the delta.lc.gif - 54 Bytes30Si isotopic signal is vital for interpreting biogenic silica as a paleoproxy. We investigated the influence of pCO2 on the Si quota, fluxes across the cell membrane, and frustule dissolution in the marine diatom Thalassiosira weissflogii and determined the effect that pCO2 has on the isotopic fractionation of Si. We found that our Si flux estimates mass balance and, for the first time, describe the Si budget of a diatom. The Si quota rose in cells grown with low pCO2 (100 ppm) compared with controls (370 ppm), and the increased quota was the result of greater retention of Si (i.e., lower losses of Si through efflux and dissolution). The ratio of efflux : influx decreased twofold as pCO2 decreased from 750 to 100 ppm. The efflux of silicon is shown to significantly bias measurements of silica dissolution rates determined by isotope dilution, but no effect on the Si isotopic enrichment factor (epsilon.lc.gif - 51 Bytes) was observed. The latter effect suggests that silicon isotopic discrimination in diatoms is set by the Si transport step rather than by the polymerization step. This observation supports the use of the v signal of biogenic silica as an indicator of the percentage utilization of silicic acid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coralline algae are susceptible to the changes in the seawater carbonate system associated with ocean acidification (OA). However, the coastal environments in which corallines grow are subject to large daily pH fluctuations which may affect their responses to OA. Here, we followed the growth and development of the juvenile coralline alga Arthrocardia corymbosa, which had recruited into experimental conditions during a prior experiment, using a novel OA laboratory culture system to simulate the pH fluctuations observed within a kelp forest. Microscopic life history stages are considered more susceptible to environmental stress than adult stages; we compared the responses of newly recruited A. corymbosa to static and fluctuating seawater pH with those of their field-collected parents. Recruits were cultivated for 16 weeks under static pH 8.05 and 7.65, representing ambient and 4*preindustrial pCO2 concentrations, respectively, and two fluctuating pH treatments of daily (daytime pH = 8.45, night-time pH = 7.65) and daily (daytime pH = 8.05, night-time pH = 7.25). Positive growth rates of new recruits were recorded in all treatments, and were highest under static pH 8.05 and lowest under fluctuating pH 7.65. This pattern was similar to the adults' response, except that adults had zero growth under fluctuating pH 7.65. The % dry weight of MgCO3 in calcite of the juveniles was reduced from 10% at pH 8.05 to 8% at pH 7.65, but there was no effect of pH fluctuation. A wide range of fleshy macroalgae and at least 6 species of benthic diatoms recruited across all experimental treatments, from cryptic spores associated with the adult A. corymbosa. There was no effect of experimental treatment on the growth of the benthic diatoms. On the community level, pH-sensitive species may survive lower pH in the presence of diatoms and fleshy macroalgae, whose high metabolic activity may raise the pH of the local microhabitat.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Global change leads to a multitude of simultaneous modifications in the marine realm among which shoaling of the upper mixed layer, leading to enhanced surface layer light intensities, as well as increased carbon dioxide (CO2) concentration are some of the most critical environmental alterations for phytoplankton. In this study, we investigated the responses of growth, photosynthetic carbon fixation and calcification of the coccolithophore Gephyrocapsa oceanica to elevated inline image (51 Pa, 105 Pa, and 152 Pa) (1 Pa ~ 10 µatm) at a variety of light intensities (50-800 µmol photons/m**2/s). By fitting the light response curve, our results showed that rising inline image reduced the maximum rates for growth, photosynthetic carbon fixation and calcification. Increasing light intensity enhanced the sensitivity of these rate responses to inline image, and shifted the inline image optima toward lower levels. Combining the results of this and a previous study (Sett et al. 2014) on the same strain indicates that both limiting low inline image and inhibiting high inline image levels (this study) induce similar responses, reducing growth, carbon fixation and calcification rates of G. oceanica. At limiting low light intensities the inline image optima for maximum growth, carbon fixation and calcification are shifted toward higher levels. Interacting effects of simultaneously occurring environmental changes, such as increasing light intensity and ocean acidification, need to be considered when trying to assess metabolic rates of marine phytoplankton under future ocean scenarios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidification (OA) caused by excessive CO2 is a potential ecological threat to marine organisms. The impacts of OA on echinoderms are well-documented, but there has been a strong bias towards sea urchins, and limited information is available on sea cucumbers. This work examined the effect of medium-term (60 days) exposure to three pH levels (pH 8.06, 7.72, and 7.41, covering present and future pH variability) on the bioenergetic responses of the sea cucumber, Apostichopus japonicus, an ecologically and economically important holothurian in Asian coasts. Results showed that the measured specific growth rate linearly decreased with decreased pH, leading to a 0.42 %/day decrease at pH 7.41 compared with that at pH 8.06. The impacts of pH on physiological energetics were variable: measured energy consumption and defecation rates linearly decreased with decreased pH, whereas maintenance energy in calculated respiration and excretion were not significantly affected. No shift in energy allocation pattern was observed in A. japonicus upon exposure to pH 7.72 compared with pH 8.06. However, a significant shift in energy budget occurred upon exposure to pH 7.41, leading to decreased energy intake and increased percentage of energy that was lost in feces, thereby resulting in a significantly lowered allocation into somatic growth. These findings indicate that adult A. japonicus is resilient to the OA scenario at the end of the twenty-first century, but further acidification may negatively influence the grazing capability and growth, thereby influencing its ecological functioning as an "ecosystem engineer" and potentially harming its culture output.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the effect of the calcium concentration in seawater and thereby the calcite saturation state (omega) on the magnesium and strontium incorporation into benthic foraminiferal calcite under laboratory conditions. For this purpose individuals of the shallow-water species Heterostegina depressa (precipitating high-Mg calcite, symbiont-bearing) and Ammonia tepida (low-Mg calcite, symbiont-barren) were cultured in media under a range of [Ca2+], but similar Mg/Ca ratios. Trace element/Ca ratios of newly formed calcite were analysed with Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) and normalized to the seawater elemental composition using the equation DTE=(TE/Cacalcite)/(TE/Caseawater). The culturing study shows that DMg of A. tepida significantly decreases with increasing omega at a gradient of -4.3x10-5 per omega unit. The DSr value of A. tepida does not change with omega, suggesting that fossil Sr/Ca in this species may be a potential tool to reconstruct past variations in seawater Sr/Ca. Conversely, DMg of H. depressa shows only a minor decrease with increasing omega, while DSr increases considerably with omega at a gradient of 0.009 per omega unit. The different responses to seawater chemistry of the two species may be explained by a difference in the calcification pathway that is, at the same time, responsible for the variation in the total Mg incorporation between the two species. Since the Mg/Ca ratio in H. depressa is 50-100 times higher than that of A. tepida, it is suggested that the latter exhibits a mechanism that decreases the Mg/Ca ratio of the calcification fluid, while the high-Mg calcite forming species may not have this physiological tool. If the dependency of Mg incorporation on seawater [Ca2+] is also valid for deep-sea benthic foraminifera typically used for paleostudies, the higher Ca concentrations in the past may potentially bias temperature reconstructions to a considerable degree. For instance, 25 Myr ago Mg/Ca ratios in A. tepida would have been 0.2 mmol/mol lower than today, due to the 1.5 times higher [Ca2+] of seawater, which in turn would lead to a temperature underestimation of more than 2 °C.