1 resultado para Random Forests Classifier
em Publishing Network for Geoscientific
Filtro por publicador
- Aberdeen University (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (7)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (13)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (4)
- Aston University Research Archive (2)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (36)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (61)
- Biodiversity Heritage Library, United States (4)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (51)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- CentAUR: Central Archive University of Reading - UK (80)
- Cochin University of Science & Technology (CUSAT), India (15)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (11)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (5)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (98)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- CUNY Academic Works (7)
- Dalarna University College Electronic Archive (4)
- Department of Computer Science E-Repository - King's College London, Strand, London (8)
- Digital Commons - Michigan Tech (7)
- Digital Commons at Florida International University (3)
- DigitalCommons@The Texas Medical Center (1)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Diposit Digital de la UB - Universidade de Barcelona (12)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (64)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (5)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (2)
- Martin Luther Universitat Halle Wittenberg, Germany (3)
- Massachusetts Institute of Technology (3)
- Ministerio de Cultura, Spain (1)
- Publishing Network for Geoscientific & Environmental Data (1)
- QSpace: Queen's University - Canada (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório da Produção Científica e Intelectual da Unicamp (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (6)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (127)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (10)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (62)
- Universidad del Rosario, Colombia (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade do Minho (2)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (9)
- Université de Lausanne, Switzerland (53)
- Université de Montréal, Canada (10)
- University of Queensland eSpace - Australia (38)
- University of Southampton, United Kingdom (1)
- University of Washington (1)
Resumo:
The classification of airborne lidar data is a relevant task in different disciplines. The information about the geometry and the full waveform can be used in order to classify the 3D point cloud. In Wadden Sea areas the classification of lidar data is of main interest for the scientific monitoring of coastal morphology and habitats, but it becomes a challenging task due to flat areas with hardly any discriminative objects. For the classification we combine a Conditional Random Fields framework with a Random Forests approach. By classifying in this way, we benefit from the consideration of context on the one hand and from the opportunity to utilise a high number of classification features on the other hand. We investigate the relevance of different features for the lidar points in coastal areas as well as for the interaction of neighbouring points.