16 resultados para Randall-Sundrum
em Publishing Network for Geoscientific
Resumo:
A study of the polarimetric backscattering response of newly formed sea ice types under a large assortment of surface coverage was conducted using a ship-based C-band polarimetric radar system. Polarimetric backscattering results and physical data for 40 stations during the fall freeze-up of 2003, 2006, and 2007 are presented. Analysis of the copolarized correlation coefficient showed its sensitivity to both sea ice thickness and surface coverage and resulted in a statistically significant separation of ice thickness into two regimes: ice less than 6 cm thick and ice greater than 8 cm thick. A case study quantified the backscatter of a layer of snow infiltrated frost flowers on new sea ice, showing that the presence of the old frost flowers can enhance the backscatter by more than 6 dB. Finally, a statistical analysis of a series of temporal-spatial measurements over a visually homogeneous frost-flower-covered ice floe identified temperature as a significant, but not exclusive, factor in the backscattering measurements.
Resumo:
When a mantle plume interacts with a mid-ocean ridge, both are noticeably affected. The mid-ocean ridge can display anomalously shallow bathymetry, excess volcanism, thickened crust, asymmetric sea-floor spreading and a plume component in the composition of the ridge basalts (Schilling, 1973, doi:10.1038/242565a0; Verma et al., 1983, doi:10.1038/306654a0; Ito and Lin, 1995, doi:10.1130/0091-7613(1995)023<0657:OSCHIC>2.3.CO;2; Müller et al., 1998, doi:10.1038/24850). The hotspot-related volcanism can be drawn closer to the ridge, and its geochemical composition can also be affected (Ito and Lin, 1995, doi:10.1130/0091-7613(1995)023<0657:OSCHIC>2.3.CO;2; White et al., 1993, doi:10.1029/93JB02018; Kincaid et al., 1995, doi:10.1038/376758a0; Kingsley and Schilling, 1998, doi:10.1029/98JB01496 ). Here we present Sr-Nd-Pb isotopic analyses of samples from the next-to-oldest seamount in the Hawaiian hotspot track, the Detroit seamount at 51° N, which show that, 81 Myr ago, the Hawaiian hotspot produced volcanism with an isotopic signature indistinguishable from mid-ocean ridge basalt. This composition is unprecedented in the known volcanism from the Hawaiian hotspot, but is consistent with the interpretation from plate reconstructions (Mammerickx and Sharman, 1988, doi:10.1029/JB093iB04p03009) that the hotspot was located close to a mid-ocean ridge about 80 Myr ago. As the rising mantle plume encountered the hot, low-viscosity asthenosphere and hot, thin lithosphere near the spreading centre, it appears to have entrained enough of the isotopically depleted upper mantle to overwhelm the chemical characteristics of the plume itself. The Hawaiian hotspot thus joins the growing list of hotspots that have interacted with a rift early in their history.
Resumo:
Age-progressive, linear seamount chains in the northeast Pacific appear to have formed as the Pacific plate passed over a set of stationary hotspots; however, some anomalously young ages and the lack of an "enriched" isotopic signature in basalts from the seamounts do not fit the standard hotspot model. For example, published ages (28-30 Ma) for basalts dredged from the Patton-Murray seamount platform in the Gulf of Alaska are 2-4 m.y. younger than the time when the platform was above the Cobb hotspot. However, the lowermost basalt recovered by ocean drilling on Patton-Murray yielded a 40Ar-39Ar age of 33 Ma. This age exactly coincides with the time when the seamount platform was above the Cobb hotspot, consistent with a stationary, long-lived mantle plume. A 27 Ma alkalic basalt flow recovered 8 m above the 33 Ma basalt is similar in age and composition to the previously dredged basalts, and may be the alkalic capping phase typical of many hotspot volcanoes. A 17 Ma tholeiitic basalt sill recovered 5 m above the 27 Ma basalt was emplaced long after the seamount platform moved away from the hotspot, and may be associated with a period of intraplate extension. Anomalously young phases of volcanism on this and other hotspot seamounts suggest that they can be volcanically rejuvenated by nonhotspot causes, but this rejuvenation does not rule out the hotspot model as an explanation for the initial creation of the seamount platform. The lack of an "enriched" isotopic signature in any of these basalts shows that enriched compositions are not necessary characteristics of plume-related basalts. The isotopic compositions of the lower basalts are slightly more depleted than the 0-9 Ma products of the Cobb hotspot, despite the fact that the hotspot was closer to a spreading ridge at 0-9 Ma. It appears that this hotspot, like several others, has become more enriched with time.