77 resultados para Rameau, Jean François, b. 1716
em Publishing Network for Geoscientific
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
Determining the manner in which food webs will respond to environmental changes is difficult because the relative importance of top-down vs. bottom-up forces in controlling ecosystems is still debated. This is especially true in the Arctic tundra where, despite relatively simple food webs, it is still unclear which forces dominate in this ecosystem. Our primary goal was to assess the extent to which a tundra food web was dominated by plant-herbivore or predator--rey interactions. Based on a 17-year (1993-2009) study of terrestrial wildlife on Bylot Island, Nunavut, Canada, we developed trophic mass balance models to address this question. Snow Geese were the dominant herbivores in this ecosystem, followed by two sympatric lemming species (brown and collared lemmings). Arctic foxes, weasels, and several species of birds of prey were the dominant predators. Results of our trophic models encompassing 19 functional groups showed that <10% of the annual primary production was consumed by herbivores in most years despite the presence of a large Snow Goose colony, but that 20-100% of the annual herbivore production was consumed by predators. The impact of herbivores on vegetation has also weakened over time, probably due to an increase in primary production. The impact of predators was highest on lemmings, intermediate on passerines, and lowest on geese and shorebirds, but it varied with lemming abundance. Predation of collared lemmings exceeded production in most years and may explain why this species remained at low density. In contrast, the predation rate on brown lemmings varied with prey density and may have contributed to the high-amplitude, periodic fluctuations in the abundance of this species. Our analysis provided little evidence that herbivores are limited by primary production on Bylot Island. In contrast, we measured strong predator-prey interactions, which supports the hypothesis that this food web is primarily controlled by top-down forces. The presence of allochthonous resources subsidizing top predators and the absence of large herbivores may partly explain the predominant role of predation in this low-productivity ecosystem.
Resumo:
Particulate samples from the water column were collected monthly from depths of 5-150 m, between May 1996 and March 1997, in the northwestern Mediterranean Sea (Ligurian Sea) as part of the DYFAMED project within the French JGOFS program. These samples were analyzed by gas chromatography-electron impact mass spectrometry for their phytol and 3-methylidene-3,7,11-trimethylhexadecan-1,2-diol (phytyldiol) content. The corresponding Chlorophyll Phytyl side chain Photodegradation Index, molar ratio of phytyldiol to phytol, was calculated and the mean amount of chlorophyll photodegraded within the euphotic zone estimated. Seasonal differences in the chlorophyll photodegradation process appear in the one-year study. The chlorophyll appeared more photodegraded in the surface water (generally more than 40% photodegraded at 5-10 m) than at the deep chlorophyll maximum (DCM) (40-50 m) observed in the summer stratified waters (about 20% photodegraded). This difference was attributed to the healthy state of the phytoplankton community (coincidence with the highest primary production levels) and to the lower intensity of irradiance at the DCM level. On the other hand, the bulk of the detrital chlorophyll (chlorophyll associated with phytodetritus, phaeopigments) undergoes photodegradation before it sinks out of the photic zone. However, in January (winter mixed water) the pigments exported towards the sea floor were less photodegraded. This is thought to result from a shorter period of residence of the pigments in the photic zone due to vertical convection and grazing activity of macrozooplankton (salps), which are producers of rapid sinking fecal pellets.