7 resultados para ROS, Robotic, Operating, Systems, Robotica, Piattaforma, Sviluppo
em Publishing Network for Geoscientific
Resumo:
The software PanXML is a tool to create XML files needed for DOI registration at the German National Library of Science and Technology (TIB). PanXML is distributed as freeware for the operating systems Microsoft Windows, Apple OS X and Linux. An XML file created by PanXML is based on the XSD file article-doi_v3.2.xsd. Further schemas may be added on request.
Resumo:
The software Multibeam Converter is a tool to convert files or folders of files (ascii/tab-separated data files with or without metaheader), downloaded from PANGAEA via the search engine or the data warehouse to the ODV import format, e.g. for visualization or further processing. MultibeamConverter is distributed as freeware for the operating systems Microsoft Windows, Apple OS X and Linux.
Resumo:
LatLongConverter converts positions from geodetic system to Gauss-Krüger or UTM coordinates. This program is distributed as freeware for the operating systems Microsoft Windows, Apple OS X and Linux.
Resumo:
The software Pan2Applic is a tool to convert files or folders of files (ascii/tab-separated data files with or without metaheader), downloaded from PANGAEA via the search engine or the data warehouse to formats as used by applications, e.g. for visualization or further processing. It may also be used to convert files or zip-archives as downloaded from CD-ROM data collections, published in the WDC-MARE Reports series. Pan2Applic is distributed as freeware for the operating systems Microsoft Windows, Apple OS X and Linux.
Resumo:
The program PanTool was developed as a tool box like a Swiss Army Knife for data conversion and recalculation, written to harmonize individual data collections to standard import format used by PANGAEA. The format of input files the program PanTool needs is a tabular saved in plain ASCII. The user can create this files with a spread sheet program like MS-Excel or with the system text editor. PanTool is distributed as freeware for the operating systems Microsoft Windows, Apple OS X and Linux.
Resumo:
LAPMv2 is a research software solution specifically developed to allow marine scientists to produce geo-referenced visual maps of the seafloor, known as mosaics, from a set of underwater images and navigation data. LAPMv2 has a graphical user interface that guides the user through the different steps of the mosaicking workflow. LAPMv2 runs on 64-bit Windows, MacOS X and Linux operating systems. There are two versions for each operating system: (1) the WEB-installers (lightweight but require an internet connection during the installation) and (2) the MCR installers (large files but can be installed on computer without internet-connection). The user manual explains how to install and start the program on the different operating systems. Go to http://www.lapm.eu.com for further information about the latest versions of LAPMv2.
Resumo:
Maritime accidents involving ships carrying passengers may pose a high risk with respect to human casualties. For effective risk mitigation, an insight into the process of risk escalation is needed. This requires a proactive approach when it comes to risk modelling for maritime transportation systems. Most of the existing models are based on historical data on maritime accidents, and thus they can be considered reactive instead of proactive. This paper introduces a systematic, transferable and proactive framework estimating the risk for maritime transportation systems, meeting the requirements stemming from the adopted formal definition of risk. The framework focuses on ship-ship collisions in the open sea, with a RoRo/Passenger ship (RoPax) being considered as the struck ship. First, it covers an identification of the events that follow a collision between two ships in the open sea, and, second, it evaluates the probabilities of these events, concluding by determining the severity of a collision. The risk framework is developed with the use of Bayesian Belief Networks and utilizes a set of analytical methods for the estimation of the risk model parameters. The model can be run with the use of GeNIe software package. Finally, a case study is presented, in which the risk framework developed here is applied to a maritime transportation system operating in the Gulf of Finland (GoF). The results obtained are compared to the historical data and available models, in which a RoPax was involved in a collision, and good agreement with the available records is found.