27 resultados para RESTRICTED GEOMETRY
em Publishing Network for Geoscientific
Resumo:
We present a consistent data set for the ice thickness, the bedrock topography and the ice surface topography of the King George Island ice cap (Arctowski Icefield and the adjacent central part). The data set is composed of groundbased and airborne Ground Penetrating Radar (GPR) and differential GPS (DGPS) measurements, obtained during several field campaigns. The data set incorporates groundbased measurements in the safely accessible inner parts and airborne measurements in the heavily crevassed coastal areas of the ice cap. In particular, the inclusion of airborne GPR measurements with the 30MHz BGR-P30-System developed at the Institute of Geophysics (University of Münster) completes the picture of the ice geometry substantially. The compiled digital elevation model of the bedrock shows a rough, highly variable topography with pronounced valleys, ridges, and troughs. The mean ice thickness is approx. 238m, with a maximum value of approx. 400m in the surveyed area. Noticeable are bounded areas in the bedrock topography below sea level where marine based ice exists.
Resumo:
Partial pressure of CO2 (pCO2) and iron availability in seawater show corresponding changes due to biological and anthropogenic activities. The simultaneous change in these factors precludes an understanding of their independent effects on the ecophysiology of phytoplankton. In addition, there is a lack of data regarding the interactive effects of these factors on phytoplankton cellular stoichiometry, which is a key driving factor for the biogeochemical cycling of oceanic nutrients. Here, we investigated the effects of pCO2 and iron availability on the elemental composition (C, N, P, and Si) of the diatom Pseudo-nitzschia pseudodelicatissima (Hasle) Hasle by dilute batch cultures under 4 pCO2 (~200, ~380, ~600, and ~800 µatm) and five dissolved inorganic iron (Fe'; ~5, ~10, ~20, ~50, and ~100 pmol /L) conditions. Our experimental procedure successfully overcame the problems associated with simultaneous changes in pCO2 and Fe' by independently manipulating carbonate chemistry and iron speciation, which allowed us to evaluate the individual effects of pCO2 and iron availability. We found that the C:N ratio decreased significantly only with an increase in Fe', whereas the C:P ratio increased significantly only with an increase in pCO2. Both Si:C and Si:N ratios decreased with increasing pCO2 and Fe'. Our results indicate that changes in pCO2 and iron availability could influence the biogeochemical cycling of nutrients in future oceans with high- CO2 levels, and, similarly, during the time course of phytoplankton blooms. Moreover, pCO2 and iron availability may also have affected oceanic nutrient biogeochemistry in the past, as these conditions have changed markedly over the Earth's history.
Resumo:
Understanding species distribution patterns and the corresponding environmental determinants is a crucial step in the development of effective strategies for the conservation and management of plant communities and ecosystems. Therefore, a central prerequisite is the biogeographical and macroecological analysis of factors and processes that determine contemporary, potential, as well as future geographic distribution of species. This thesis has been conducted in the framework of the BIOMAPS-BIOTA project at the Nees Institute of Biodiversity of Plants, which was funded by the German Federal Ministry of Education and Research (BMBF). The study investigated patterns of plants species richness and phytogeographic regions under contemporary environmental conditions and forecasted future climate change in the area of West Africa covering five countries: Benin, Burkina Faso, Côte d'Ivoire, Ghana and Togo. Firstly, geographic patterns of vascular plant species richness have been depicted at a relatively fine spatial resolution based on the potential distribution of 3,393 species. Species richness is closely related to the steep climatic gradient existing in the region with a high concentration of species in the most humid areas in the south and decreases towards the northern drier areas. The investigation of the effectiveness of the existing network of protected areas shows an overall good coverage of species in the study area. However, the proportion of covered species is considerably lower at national extent for some countries, thus calling for more protected areas in order to cover adequately a maximum number of plants species in these countries. Secondly, based on the potential distribution range of vascular plant species, seven phytogeographic regions have been delineated that broadly reflect the vegetation zones as defined by White (1983). However notable differences to the delineation of White (1983) occur at the margins of some regions. Corresponding to a general southward shifted of all regions. And expansion of the Sahel vegetation zone is observed in the north, while the rainforest zone is decreased in the very south.This is alarming since the rainforest shelters a high number of species and a high proportion of range-restricted or endemic species, despite their relatively small extent compared to the other regions. Finally, the evaluation of the potential impact of climate change on plant species richness in the study area, results in a severe loss of future suitable habitat for up to 50% of species per grid cell, particularly in the rainforest region. Moreover, the analysis of the possible shift of phytogeographic regions shows in general a strong deterioration of the West African rainforest. In contrast the drier areas are expanding continuously, although a slight gain in species number can be observed in some particular regions. The overall lesson to retain from the results of this study is that the West African rainforest should be fixed as a high priority area for the conservation of biodiversity of plants, since it is subject to severe contemporary and projected future threats.