3 resultados para REGRESSION TREE

em Publishing Network for Geoscientific


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Woodland savannahs provide essential ecosystem functions and services to communities. On the African continent, they are widely utilized and converted to intensive land uses. This study investigates the land cover changes of 108,038 km**2 in NE Namibia using multi-temporal, multi-sensor Landsat imagery, at decadal intervals from 1975 to 2014, with a post-classification change detection method and supervised Regression Tree classifiers. We discuss likely impacts of land tenure and reforms over the past four decades on changes in land use and land cover. These changes included losses, gains and exchanges between predominant land cover classes. Exchanges comprised logical conversions between woodland and agricultural classes, implying woodland clearing for arable farming, cropland abandonment and vegetation succession. The most dominant change was a reduction in the area of the woodland class due to the expansion of the agricultural class, specifically, small-scale cereal and pastoral production. Woodland area decreased from 90% of the study area in 1975 to 83% in 2014, while cleared land increased from 9% to 14%. We found that the main land cover changes are conversion from woodland to agricultural and urban land uses, driven by urban expansion and woodland clearing for subsistence-based agriculture and pastoralism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To address growing concern over the effects of fisheries non-target catch on elasmobranchs worldwide, the accurate reporting of elasmobranch catch is essential. This requires data on a combination of measures, including reported landings, retained and discarded non-target catch, and post-discard survival. Identification of the factors influencing discard vs. retention is needed to improve catch estimates and to determine wasteful fishing practices. To do this we compared retention rates of elasmobranch non-target catch in a broad subset of fisheries throughout the world by taxon, fishing country, and gear. A regression tree and random forest analysis indicated that taxon was the most important determinant of retention in this dataset, but all three factors together explained 59% of the variance. Estimates of total elasmobranch removals were calculated by dividing the FAO global elasmobranch landings by average retention rates and suggest that total elasmobranch removals may exceed FAO reported landings by as much as 400%. This analysis is the first effort to directly characterize global drivers of discards for elasmobranch non-target catch. Our results highlight the importance of accurate quantification of retention and discard rates to improve assessments of the potential impacts of fisheries on these species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Manual and low-tech well drilling techniques have potential to assist in reaching the United Nations' millennium development goal for water in sub-Saharan Africa. This study used publicly available geospatial data in a regression tree analysis to predict groundwater depth in the Zinder region of Niger to identify suitable areas for manual well drilling. Regression trees were developed and tested on a database for 3681 wells in the Zinder region. A tree with 17 terminal leaves provided a range of ground water depth estimates that were appropriate for manual drilling, though much of the tree's complexity was associated with depths that were beyond manual methods. A natural log transformation of groundwater depth was tested to see if rescaling dataset variance would result in finer distinctions for regions of shallow groundwater. The RMSE for a log-transformed tree with only 10 terminal leaves was almost half that of the untransformed 17 leaf tree for groundwater depths less than 10 m. This analysis indicated important groundwater relationships for commonly available maps of geology, soils, elevation, and enhanced vegetation index from the MODIS satellite imaging system.