12 resultados para RAPIDLY PROGRESSIVE PERIODONTITIS

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mass-spectrometric uranium-series dated stalagmite from the Central Alps of Austria provides unprecedented new insights into high-altitude climate change during the peak of isotope stage 3. The stalagmite formed continuously between 57 and 46 kyr before present. A series of 'Hendy tests' demonstrates that the outer parts of the sample show a progressive increase of both stable C and O isotope values. No such covariant increase was detected within the axial zone. This in conjunction with other observations suggests that the continuous stable oxygen isotope profile obtained from the axial zone of the stalagmite largely reflects the unaltered isotopic composition of the cave drip water. The delta18O record shows events of high delta18O values that correlate remarkably with Interstadials 15 (a and b), 14 and 12 identified in the Greenland ice cores. Interstadial 15b started rapidly at 55.6 kyr and lasted ~300 yr only, Interstadial 15a peaked 54.9 kyr ago and was even of shorter duration (~100 yr), and Interstadial 14 commenced 54.2 kyr ago and lasted ~3000 yr. This stalagmite thus represents one of the first terrestrial archives outside the high latitudes which record precisely dated Dansgaard-Oeschger (D/O) events during isotope stage 3. Provided that rapid D/O warmings occurred synchronously in Greenland and the European Alps, the new data provide an independent tool to improve the GRIP and GISP2 chronologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of the winter-spring phytoplankton bloom was investigated in the Bay of Calvi (Corsica, Ligurian Sea, northwestern Mediterranean) in 1979, 1986, 1988, 1997 and 1998. A drastic reduction of phytoplankton biomass was evidenced over the last 2 decades, in relation to long-term changes in climatic and environmental conditions. Between 1979 and 1998, the monthly averaged chlorophyll a concentrations at 1 m decreased by about 80% during February, March and April. Simultaneously, major changes to hydrodynamic conditions include warmer water, overall decrease of salinity at 10 m depth, longer periods of bright sunshine and lower wind stress. The changes in environmental conditions were large enough to affect the vertical stability of the water column during the winter-spring period and to reduce nutrient replenishment of the surface layer prior to the usual period of phytoplankton growth. Until 1986, the main factor driving nutrient replenishment was the winter upward mixing of nutrient-rich deep waters, while the progressive reduction of mixing from 1988 induced nutrient limitation of surface waters in the last decade. The following hypotheses on changes in the development of the winter-spring phytoplankton bloom are made: (1) Until 1986, phytoplankton peaks took place in relatively high-nutrient waters and were diatom-dominated. (2) Between 1986 and 1988, decreasing Si availability led to Si limitation which caused a reduction in diatom abundance. This resulted in the disappearance of the diatom-dominated pulses and in lower phytoplankton biomass and was accompanied by a shift toward non-siliceous phytoplankton. (3) In 1988, 1997 and 1998, decreasing nitrate availability led to nitrate limitation, thus explaining the progressive reduction in non-siliceous phytoplankton biomass. Other, associated changes in benthos assemblages and ichthyofauna are documented. The conclusions from the Bay of Calvi are extended to the whole western Corsican coast. This confirms that the Mediterranean reacts rapidly to external perturbations, which are driven by climate change in that particular area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variability in pH is a common occurrence in many aquatic environments, due to physical, chemical and biological processes. In coastal waters, lagoons, estuaries and inland waters, pH can change very rapidly (within seconds or hours) in addition to daily and seasonal changes. At the same time, progressive ocean acidification caused by anthropogenic CO2 emissions is superimposed on these spatial and temporal pH changes. Photosynthetic organisms are therefore unavoidably subject to significant pH variations at the cell surface. Whether this will affect their response to long-term ocean acidification is still unknown, nor is it known whether the short-term sensitivity to pH change is affected by the pCO2 to which the cells are acclimated. We posed the latter open question as our experimental hypothesis: Does acclimation to seawater acidification affect the response of phytoplankton to acute pH variations? The diatom Skeletonema costatum, commonly found in coastal and estuarine waters where short-term acute changes in pH frequently occur, was selected to test the hypothesis. Diatoms were grown at both 390 (pH 8.2, low CO2; LC) and 1000 (pH 7.9, high CO2; HC) µatm CO2 for at least 20 generations, and photosynthetic responses to short-term and acute changes in pH (between 8.2 and 7.6) were investigated. The effective quantum yield of LC-grown cells decreased by ca. 70% only when exposed to pH 7.6; this was not observed when exposed to pH 7.9 or 8.2. HC-grown cells did not show significant responses in any pH treatment. Non-photochemical quenching showed opposite trends. In general, our results indicate that while LC-grown cells are rather sensitive to acidification, HC-grown cells are relatively unresponsive in terms of photochemical performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The late Eocene through earliest Miocene stable-isotope composition of southwest Pacific microfossils has been examined in a traverse of high-quality sedimentary sequences ranging from subantarctic (DSDP Site 277) through temperate regions (DSDP Sites 592 and 593). Changes in oxygen-isotope values, measured in benthic and planktonic foraminifers, document the Oligocene development and strengthening of latitudinal thermal zonation from water masses with broad temperature gradients during the Eocene to the steeper gradients and more distinct latitudinally distributed surface water-mass belts of the Neogene. The oxygen-isotope records can be divided into three intervals: late Eocene, early Oligocene, and middle to late Oligocene. Each interval represents a successive stage in the evolution of latitudinal thermal gradients between subantarctic and temperate regions in the Southern Hemisphere. During the late Eocene, oxygen-isotope values at subantarctic Site 277 were similar to those at temperate Sites 592 and 593. The isotope values suggest that, although the inferred paleotemperatures at Site 277 are slightly cooler on average than those at the temperate sites, there is no evidence for a major thermal boundary between the regions at this time. All three sites record the well-known oxygen-isotope enrichment of about 1 per mil in both planktonic and benthic foraminifers in close association with the Eocene/Oligocene boundary. In contrast to the earliest Oligocene enrichments in the planktonic and benthic oxygen-isotope composition at Site 277, more northern Sites 592 and 593 exhibit a depletion through the early-middle Oligocene. This documents the beginning of thermal segregation as subantarctic waters cooled relative to those at temperate latitudes. During the Oligocene, this surface-water differentiation continued, as measured by planktonic d18O values. The oxygen-isotope records of the benthic foraminifers also began to diverge in the earliest Oligocene. The most enriched oxygen-isotope values in all records cluster in the middle Oligocene, marked by oscillating episodes of enrichments >0.5 per mil occurring most prominently in the subantarctic record of Site 277. These values can be interpreted as recording either the coldest oceanic temperatures of the Paleogene and/or accumulations of Antarctic ice. After this interval, latitudinal thermal differentiation developed rapidly during the middle Oligocene, especially in the surface waters which actually warmed in temperate areas. If the enriched Oligocene oxygen-isotope values indicate that ice had accumulated, this ice must have disappeared by the early Miocene, when depleted oxygen-isotope values suggest very warm conditions. The data presented in this chapter document the progressive increase of latitudinal temperature gradients from the late Eocene through the late Oligocene. This pattern of increasing isotopic offset between latitudinally distributed southwest Pacific sites is linked to the establishment and strengthening of the Circum-Antarctic Current, previously considered to have developed during the middle to late Oligocene. The intensification of this current system progressively decoupled the warm subtropical gyres from cool polar circulation, in turn leading to increased Antarctic glaciation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compared to mid-latitude deserts, the properties, formation and evolution of desert pavements and the underlying vesicular layer in Antarctica are poorly understood. This study examines the desert pavements and the vesicular layer from seven soil chronosequences in the Transantarctic Mountains that have developed on two contrasting parent materials: sandstone-dolerite and granite-gneiss. The pavement density commonly ranges from 63 to 92% with a median value of 80% and does not vary significantly with time of exposure or parent material composition. The dominant size range of clasts decreases with time of exposure, ranging from 16-64 mm on Holocene and late Quaternary surfaces to 8-16 mm on surfaces of middle Quaternary and older age. The proportion of clasts with ventifaction increases progressively through time from 20% on drifts of Holocene and late Quaternary age to 35% on Miocene-aged drifts. Desert varnish forms rapidly, especially on dolerite clasts, with nearly 100% cover on surfaces of early Quaternary and older age. Macropitting occurs only on clasts that have been exposed since the Miocene. A pavement development index, based on predominant clast-size class, pavement density, and the proportion of clasts with ventifaction, varnish, and pits, readily differentiated pavements according to relative age. From these findings we judge that desert pavements initially form from a surficial concentration of boulders during till deposition followed by a short period of deflation and a longer period of progressive chemical and physical weathering of surface clasts. The vesicular layer that underlies the desert pavement averages 4 cm in thickness and is enriched in silt, which is contributed primarily by weathering rather than eolian deposition. A comparison is made between desert pavement properties in mid-latitude deserts and Antarctic deserts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since productivity and growth of coral-associated dinoflagellate algae is nitrogen (N)-limited, dinitrogen (N2) fixation by coral-associated microbes is likely crucial for maintaining the coral-dinoflagellate symbiosis. It is thus essential to understand the effects future climate change will have on N2 fixation by the coral holobiont. This laboratory study is the first to investigate short-term effects of ocean acidification on N2 fixation activity associated with the tropical, hermatypic coral Seriatopora hystrix using the acetylene reduction assay in combination with calcification measurements. Findings reveal that simulated ocean acidification ( pCO2 1080 µatm) caused a rapid and significant decrease (53%) in N2 fixation rates associated with S. hystrix compared to the present day scenario ( pCO2 486 µatm). In addition, N2 fixation associated with the coral holobiont showed a positive exponential relationship with its calcification rates. This suggests that even small declines in calcification rates of hermatypic corals under high CO2 conditions may result in decreased N2 fixation activity, since these 2 processes may compete for energy in the coral holobiont. Ultimately, an intensified N limitation in combination with a decline in skeletal growth may trigger a negative feedback loop on coral productivity exacerbating the negative long-term effects of ocean acidification.