4 resultados para Quico Rovira-Beleta
em Publishing Network for Geoscientific
Resumo:
A phytosociological study was conducted in the National Park of Alta Murgia in the Apulia region (Southern Italy) to determine the adverse effects of metal contamination of soils on the distribution of plant communities. The phytosociological analyses have shown a remarkable biodiversity of vegetation on non-contaminated soils, while biodiversity appeared strongly reduced on metal-contaminated soils. The area is naturally covered by a wide steppic grassland dominated by Stipa austroitalica Martinovsky subsp. austroitalica. Brassicaceae such as Sinapis arvensis L. are the dominating species on moderated contaminated soils, whereas spiny species of Asteraceae such as Silybum marianum (L.) Gaertn. and Carduus pycnocephalus L. subsp. pycnocephalus are the dominating vegetation on heavily metal-contaminated soils. The presence of these spontaneous species on contaminated soils suggest their potential for restoration of degraded lands by phytostabilization strategy.
Resumo:
Antarctic glacier forefields are extreme environments and pioneer sites for ecological succession. Increasing temperatures due to global warming lead to enhanced deglaciation processes in cold-affected habitats, and new terrain is becoming exposed to soil formation and microbial colonization. However, only little is known about the impact of environmental changes on microbial communities and how they develop in connection to shifting habitat characteristics. In this study, using a combination of molecular and geochemical analysis, we determine the structure and development of bacterial communities depending on soil parameters in two different glacier forefields on Larsemann Hills, East Antarctica. Our results demonstrate that deglaciation-dependent habitat formation, resulting in a gradient in soil moisture, pH and conductivity, leads to an orderly bacterial succession for some groups, for example Cyanobacteria, Bacteroidetes and Deltaproteobacteria in a transect representing 'classical' glacier forefields. A variable bacterial distribution and different composed communities were revealed according to soil heterogeneity in a slightly 'matured' glacier forefield transect, where Gemmatimonadetes, Flavobacteria, Gamma- and Deltaproteobacteria occur depending on water availability and soil depth. Actinobacteria are dominant in both sites with dominance connected to certain trace elements in the glacier forefields.