116 resultados para Quartz tungsten halogen

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Widespread Lower Cretaceous magmatism occurred along the Indian-Australian/Antarctic margins, and in the juvenile Indian Ocean, during the rifting of eastern Gondwana. The formation of this magmatic province probably began around 120-130 Ma with the eruption of basalts on the Naturaliste Plateau and at Bunbury, western Australia. On the northeast margin of India, activity began around 117 Ma with the Rajmahal continental basalts and associated lamprophyre intrusions. The formation of the Kerguelen Plateau in the Indian Ocean began no later than 114 Ma. Ultramafic lamprophyres (alnoites) were emplaced in the Prince Charles Mountains near the Antarctic continental margin at ~ 110 Ma. These events are considered to be related to a major mantle plume, the remnant of which is situated beneath the region of Kerguelen and Heard islands at the present day. Geochemical data are presented for each of these volcanic suites and are indicative of complex interactions between asthenosphere-derived magmas and the continental lithosphere. Kerguelen Plateau basalts have Sr and Nd isotopic compositions lying outside the field for Indian Ocean mid-ocean ridge basalts (MORB) but, with the exception of Site 738 at the southern end of the plateau, within the range of more recent hotspot basalts from Kerguelen and Heard Islands. However, a number of the plateau tholeiites are characterized by lower 206Pb/204Pb ratios than are basalts from Kerguelen Island, and many also have anomalously high La/Nb ratios. These features suggest that the source of the Kerguelen Plateau basalts suffered contamination by components derived from the Gondwana continental lithosphere. An extreme expression of this lithospheric signature is shown by a tholeiite from Site 738, suggesting that the southernmost part of the Kerguelen Plateau may be underlain by continental crust. The Rajmahal tholeiites mostly fall into two distinct geochemical groups. Some Group I tholeiites have Sr and Nd isotopic compositions and incompatible element abundances, similar to Kerguelen Plateau tholeiites from Sites 749 and 750, indicating that the Kerguelen-Heard mantle plume may have directly furnished Rajmahal volcanism. However, their elevated 207Pb/204Pb ratios indicate that these magmas did not totally escape contamination by continental lithosphere. In contrast to the Group I tholeiites, significant contamination is suggested for Group II Rajmahal tholeiites, on the basis of incompatible element abundances and isotopic compositions. The Naturaliste Plateau and the Bunbury Basalt samples show varying degrees of enrichment in incompatible elements over normal MORB. The Naturaliste Plateau samples (and Bunbury Basalt) have high La/Nb ratios, a feature not inconsistent with the notion that the plateau may consist of stretched continental lithosphere, near the ocean-continent divide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tungsten contents in iron-manganese nodules and crusts from different parts of the World Ocean, as well as its relationships with a number of chemical elements are under consideration. A trend to correlation of tungsten with Fe, Ti, W, Pb, and Co is noticed. Comparison of tungsten contents in the nodules and host sediments indicates its low geochemical mobility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The precise cause and timing of the Cretaceous-Paleocene (K-P) mass extinction 65 Ma ago remains a matter of debate. Many advocate that the extinction was caused by a meteorite impact at Chicxulub, Mexico, and a number of potential kill-mechanisms have been proposed for this. Although we now have good constraints on the size of this impact and chemistry of the target rocks, estimates of its environmental consequences are hindered by a lack of knowledge about the obliquity of this impact. An oblique impact is likely to have been far more catastrophic than a sub-vertical one, because greater volumes of volatiles would have been released into the atmosphere. The principal purpose of this study was to characterize shocked quartz within distal K-P ejecta, to investigate whether the quartz distribution carried a signature of the direction and angle of impact. Our analyses show that the total number, maximum and average size of shocked quartz grains all decrease gradually with paleodistance from Chicxulub. We do not find particularly high abundances in Pacific sites relative to Atlantic and European sites, as has been previously reported, and the size-distribution around Chicxulub is relatively symmetric. Ejecta samples at any one site display features that are indicative of a wide range of shock pressures, but the mean degree of shock increases with paleodistance. These shock- and size-distributions are both consistent with the K-P layer having been formed by a single impact at Chicxulub. One site in the South Atlantic contains quartz indicating an anomalously high average shock degree, that may be indicative of an oblique impact with an uprange direction to the southeast +/- 45°. The apparent continuous coverage of proximal ejecta in this quadrant of the crater, however, suggests a relatively high impact angle of >45°. We conclude that some of the more extreme predictions of the environmental consequences of a low-angle impact at Chicxulub are probably not applicable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This book presents new data on chemical and mineral compositions and on density of altered and fresh igneous rocks from key DSDP and ODP holes drilled on the following main tectonomagmatic structures of the ocean floor: 1. Mid-ocean ridges and abyssal plains and basins (DSDP Legs 37, 61, 63, 64, 65, 69, 70, 83, and 91 and ODP Legs 106, 111, 123, 129, 137, 139, 140, 148, and 169); 2. Seamounts and guyots (DSDP Legs 19, 55, and 62 and ODP Legs 143 and 144); 3. Intraplate rises (DSDP Legs 26, 33, 51, 52, 53, 72, and 74 and ODP Legs 104, 115, 120, 121, and 183); and 4. Marginal seas (DSDP Legs 19, 59, and 60 and ODP Legs 124, 125, 126, 127, 128, and 135). Study results of altered gabbro from the Southwest Indian Ridge (ODP Leg 118) and serpentinized ultramafic rocks from the Galicia margin (ODP Leg 103) are also presented. Samples were collected by the authors from the DSDP/ODP repositories, as well as during some Glomar Challenger and JOIDES Resolution legs. The book also includes descriptions of thin sections, geochemical diagrams, data on secondary mineral assemblages, and recalculated results of chemical analyses with corrections for rock density. Atomic content of each element can be quantified in grams per standard volume (g/1000 cm**3). The suite of results can be used to estimate mass balance, but parts of the data need additional work, which depends on locating fresh analogs of altered rocks studied here. Results of quantitative estimation of element mobility in recovered sections of the upper oceanic crust as a whole are shown for certain cases: Hole 504B (Costa Rica Rift) and Holes 856H, 857C, and 857D (Middle Valley, Juan de Fuca Ridge).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quartz contents of sediments from Hole 595A, determined by X-ray diffractometry, serve as an indicator of eolian transport of terrigenous material to the central southern Pacific. The quartz contents are very small and, within limits of analytical resolution, vary only slightly from the Cretaceous to the present. However, the accumulation rate of the eolian quartz does change significantly. The quartz accumulation reflects the changing position of the site with respect to the terrigenous source areas and the variations in wind systems through time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study deals with the mineralogical variability of siliceous and zeolitic sediments, porcellanites, and cherts at small intervals in the continuously cored sequence of Deep Sea Drilling Project Site 462. Skeletal opal is preserved down to a maximum burial depth of 390 meters (middle Eocene). Below this level, the tests are totally dissolved or replaced and filled by opal-CT, quartz, clinoptilolite, and calcite. Etching of opaline tests does not increase continously with deeper burial. Opal solution accompanied by a conspicuous formation of authigenic clinoptilolite has a local maximum in Core 16 (150 m). A causal relationship with the lower Miocene hiatus at this level is highly probable. Oligocene to Cenomanian sediments represent an intermediate stage of silica diagenesis: the opal-CT/quartz ratios of the silicified rocks are frequently greater than 1, and quartz filling pores or replacing foraminifer tests is more widespread than quartz which converted from an opal-CT precursor. As at other sites, there is a marked discontinuity of the transitions from biogenic opal via opal-CT to quartz with increasing depth of burial. Layers with unaltered opal-A alternate with porcellanite beds; the intensity of the opal-CT-to-quartz transformation changes very rapidly from horizon to horizon and obviously is not correlated with lithologic parameters. The silica for authigenic clinoptilolite was derived from biogenic opal and decaying volcanic components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In August-September 1991 during the SPASIBA expedition (Scientific Program on the Arctic and Siberian Aquatorium) aboard R/V Yakov Smirnitzky in the Laptev Sea ten samples of aerosols were collected by nylon nets. A combined approach including various analytical techniques, such as single-particle analysis, instrumental neutron activation analysis, and atomic absorption spectrophotometry, was used to study composition of the samples. Mass concentration of coarse-grained (>0.001 mm) insoluble fraction of aerosols ranged from 80 to 460 ng/m**3. In all the samples remains of land vegetation were found to be the dominant component. Organic carbon content of the aerosols ranged from 23 to 49%. Inorganic part of the samples was represented mainly by alumosilicates and quartz. Anthropogenic ''fly ash'' particles were observed in all the samples. Temporal variations of element concentrations resulted from differences in air masses entering the studied area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Athabasca Basin (Canada) contains the highest grade unconformity-type uranium deposits in the world. Underlying the Athabasca Group sedimentary rocks of the Dufferin Lake zone are variably graphitic pelitic schists (VGPS), altered to chlorite and hematite (Red/Green Zone: RGZ), and locally bleached near the unconformity during paleoweathering and/or later fluid interaction, leading to a loss of graphite near the unconformity. Fluid inclusions were examined in different generations of quartz veins, using microthermometry and Raman analysis, to characterize and compare the different fluids that interacted with the RGZ and the VGPS. In the VGPS, CH4-, N2- and CO2-rich fluids circulated. CH4- and N2-rich fluids could be the result of the breakdown of graphite to CH4/CO2, whereas N2-rich fluid is interpreted to be the result of breakdown of feldspars/micas to NH4+/N2. In the RGZ, highly saline fluids interpreted to be basinally derived have been recorded. The circulation of the two types of fluids (carbonic and brines) occurred at two different distinct events: 1) during the retrograde metamorphism of the basement rocks before the deposition of the Athabasca Basin for the carbonic fluids, and 2) after the deposition of the Athabasca Basin for the brines. Thus, in addition to possibly be related to graphite depletion in the RGZ, the brines can be linked to uranium mineralization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New data on microstructures and mineral and chemical compositions of ferromanganese crusts sampled from the western slope of the Kuril Island Arc in the Sea of Okhotsk during cruises of R/V Vulkanolog are discussed. The study of the crusts using analytical electron microscopy methods revealed that their manganese phase is represented by vernadite, Fe-vernadite, todorokite, asbolane, and asbolane-buserite, while iron phase consists of hematite, hydrohematite, ferroxyhite, and magnetite. Lithic mineral assemblage includes apatite, quartz, epidote, and montmorillonite. According to chemical analysis most of the crusts contain significant part of volcanogenic and hydrothermal material. It is evident from elevated values of Mn/Fe and (Mn+Fe)/Ti ratios, low concentrations of some trace elements, and positive Eu anomaly.