126 resultados para QUEBEC-LABRADOR

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sediment core logs from six sediment cores in the Labrador Sea show millennial-scale climate variability during the last glacial by recording all Heinrich events and several major Dansgaard-Oeschger cycles. The same millennial-scale climate change is documented for surface-water d18O records of Neogloboquadrina pachyderma (left coiled); hence the surface-water d18O record can be derived from sediment core logging by means of multiple linear regression, providing a paleoclimate proxy record at very high temporal resolution (70 yrs). For the Labrador Sea, sediment core logs contain important information about deep-water current velocities and also reflect the variable input of IRD from different sources as inferred from grain-size analysis, benthic d18O, the relation of density and p-wave velocity, and magnetic susceptibility. For the last glacial, faster deep-water currents which correspond to highs in sediment physical properties, occurred during iceberg discharge and lasted for a several centuries to a few millennia. Those enhanced currents might have contributed to increased production of intermediate waters during times of reduced production of North Atlantic Deep Water. Hudson Strait might have acted as a major supplier of detrital carbonate only during lowered sea level (greater ice extent). During coldest atmospheric temperatures over Greenland, deep-water currents increased during iceberg discharge in the Labrador Sea, then surface water freshened shortly after, while the abrupt atmospheric temperature rise happened after a larger time lag of >=1 kyr. The correlation implies a strong link and common forcing for atmosphere, sea surface, and deep water during the last glacial at millennial time scales but decoupling at orbital time scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During Ocean Drilling Program (ODP) Leg 105, a thick sequence of lower Eocene to lower Oligocene sediments was recovered from Hole 647A in the southern Labrador Sea. These sediments contain diverse, well-preserved, high-latitude calcareous nannofossil flora. The nannofossil biostratigraphy of the hole indicates the presence of a minor hiatus between Zones NP 16 and NP 17 in the upper middle Eocene and a barren interval separating Zones NP 13 and NP 15. Species abundance is highest within the lower to middle Eocene and starts to decline near the base of the upper Eocene. No major change in the nannoflora was observed across the Eocene/Oligocene boundary, although a slight decrease in species abundance was recorded. The Paleogene calcareous nannofossils of nearby DSDP Site 112 were reexamined and compared with those of Site 647. Several cores were reassigned to different nannofossil zones. The calcareous nannoflora are dominated by high-latitude indicative species and also exhibit a high diversity, which suggests the influence of more temperate water masses in this region during Eocene and Oligocene time. One new subspecies from the middle Eocene, Sphenolithus furcatolithoides labradorensis, is described.