9 resultados para QUANTUM-EFFICIENCY

em Publishing Network for Geoscientific


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Photosynthetic parameters of phytoplankton and sea ice algae from landfast sea ice of the Chukchi Sea off Point Barrow, Alaska, were assessed in spring 2005 and winter through spring 2006 using Pulse Amplitude Modulated (PAM) fluorometry including estimates of maximum quantum efficiency (Fv/Fm), maximum relative electron transport rate (rETRmax), photosynthetic efficiency (alpha), and the photoadaptive index (Ek). The use of centrifuged brine samples allowed to document vertical gradients in ice algal acclimation with 5 cm vertical resolution for the first time. Bottom ice algae (0-5 cm from ice-water interface) expressed low Fv/Fm (0.331-0.426) and low alpha (0.098-0.130 /(µmol photons/m**2/s)) in December. Fv/Fm and alpha increased in March and May (0.468-0.588 and 0.141-0.438 /(µmol photons/m**2/s), respectively) indicating increased photosynthetic activity. In addition, increases in rETRmax (3.3-16.4 a.u.) and Ek (20-88 µmol photons/m**2/s) from December to May illustrates a higher potential for primary productivity as communities become better acclimated to under-ice light conditions. In conclusion, photosynthetic performance by ice algae (as assessed by PAM fluorometry) was tightly linked to sea ice salinity, temperature, and inorganic nutrient concentrations (mainly nitrogen).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Little is known concerning the effect of CO2 on phytoplankton ecophysiological processes under nutrient and trace element-limited conditions, because most CO2 manipulation experiments have been conducted under elements-replete conditions. To investigate the effects of CO2 and iron availability on phytoplankton ecophysiology, we conducted an experiment in September 2009 using a phytoplankton community in the iron limited, high-nutrient, low-chlorophyll (HNLC) region of the Bering Sea basin . Carbonate chemistry was controlled by the bubbling of the several levels of CO2 concentration (180, 380, 600, and 1000 ppm) controlled air, and two iron conditions were established, one with and one without the addition of inorganic iron. We demonstrated that in the iron-limited control conditions, the specific growth rate and the maximum photochemical quantum efficiency (Fv/Fm) of photosystem (PS) II decreased with increasing CO2 levels, suggesting a further decrease in iron bioavailability under the high-CO2 conditions. In addition, biogenic silica to particulate nitrogen and biogenic silica to particulate organic carbon ratios increased from 2.65 to 3.75 and 0.39 to 0.50, respectively, with an increase in the CO2 level in the iron-limited controls. By contrast, the specific growth rate, Fv/Fm values and elemental compositions in the iron-added treatments did not change in response to the CO2 variations, indicating that the addition of iron canceled out the effect of the modulation of iron bioavailability due to the change in carbonate chemistry. Our results suggest that high-CO2 conditions can alter the biogeochemical cycling of nutrients through decreasing iron bioavailability in the iron-limited HNLC regions in the future.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study aimed to examine interactive effects between ocean acidification and temperature on the photosynthetic and growth performance of Neosiphonia harveyi. N. harveyi was cultivated at 10 and 17.5 °C at present (~380 µatm), expected future (~800 µatm), and high (~1500 µatm) pCO2. Chlorophyll a fluorescence, net photosynthesis, and growth were measured. The state of the carbon-concentrating mechanism (CCM) was examined by pH-drift experiments (with algae cultivated at 10 °C only) using ethoxyzolamide, an inhibitor of external and internal carbonic anhydrases (exCA and intCA, respectively). Furthermore, the inhibitory effect of acetazolamide (an inhibitor of exCA) and Tris (an inhibitor of the acidification of the diffusive boundary layer) on net photosynthesis was measured at both temperatures. Temperature affected photosynthesis (in terms of photosynthetic efficiency, light saturation point, and net photosynthesis) and growth at present pCO2, but these effects decreased with increasing pCO2. The relevance of the CCM decreased at 10 °C. A pCO2 effect on the CCM could only be shown if intCA and exCA were inhibited. The experiments demonstrate for the first time interactions between ocean acidification and temperature on the performance of a non-calcifying macroalga and show that the effects of low temperature on photosynthesis can be alleviated by increasing pCO2. The findings indicate that the carbon acquisition mediated by exCA and acidification of the diffusive boundary layer decrease at low temperatures but are not affected by the cultivation level of pCO2, whereas the activity of intCA is affected by pCO2. Ecologically, the findings suggest that ocean acidification might affect the biogeographical distribution of N. harveyi.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We examined the long-term effect of naturally acidified water on a Cymodocea nodosa meadow growing at a shallow volcanic CO2 vent in Vulcano Island (Italy). Seagrass and adjacent unvegetated habitats growing at a low pH station (pH = 7.65 ± 0.02) were compared with corresponding habitats at a control station (pH = 8.01 ± 0.01). Density and biomass showed a clear decreasing trend at the low pH station and the below- to above-ground biomass ratio was more than 10 times lower compared to the control. C content and delta 13C of leaves and epiphytes were significantly lower at the low pH station. Photosynthetic activity of C. nodosa was stimulated by low pH as seen by the significant increase in Chla content of leaves, maximum electron transport rate and compensation irradiance. Seagrass community metabolism was intense at the low pH station, with significantly higher net community production, respiration and gross primary production than the control community, whereas metabolism of the unvegetated community did not differ between stations. Productivity was promoted by the low pH, but this was not translated into biomass, probably due to nutrient limitation, grazing or poor environmental conditions. The results indicate that seagrass response in naturally acidified conditions is dependable upon species and geochemical characteristics of the site and highlight the need for a better understanding of complex interactions in these environments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. Biological interactions can alter predictions that are based on single-species physiological response. It is known that leaf segments of the seagrass Posidonia oceanica will increase photosynthesis with lowered pH, but it is not clear whether the outcome will be altered when the whole plant and its epiphyte community, with different respiratory and photosynthetic demands, are included. In addition, the effects on the Posidonia epiphyte community have rarely been tested under controlled conditions, at near-future pH levels. 2. In order to better evaluate the effects of pH levels as projected for the upcoming decades on seagrass meadows, shoots of P. oceanica with their associated epiphytes were exposed in the laboratory to three pH levels (ambient: 8.1, 7.7 and 7.3, on the total scale) for 4 weeks. Net productivity, respiration, net calcification and leaf fluorescence were measured on several occasions. At the end of the study, epiphyte community abundance and composition, calcareous mass and crustose coralline algae growth were determined. Finally, photosynthesis vs. irradiance curves (PE) was produced from segments of secondary leaves cleaned of epiphytes and pigments extracted. 3. Posidonia leaf fluorescence and chlorophyll concentrations did not differ between pH treatments. Net productivity of entire shoots and epiphyte-free secondary leaves increased significantly at the lowest pH level yet limited or no stimulation in productivity was observed at the intermediate pH treatment. Under both pH treatments, significant decreases in epiphytic cover were observed, mostly due to the reduction of crustose coralline algae. The loss of the dominant epiphyte producer yet similar photosynthetic response for epiphyte-free secondary leaves and shoots suggests a minimal contribution of epiphytes to shoot productivity under experimental conditions. 4. Synthesis. Observed responses indicate that under future ocean acidification conditions foreseen in the next century an increase in Posidonia productivity is not likely despite the partial loss of epiphytic coralline algae which are competitors for light. A decline in epiphytic cover could, however, reduce the feeding capacity of the meadow for invertebrates. In situ long-term experiments that consider both acidification and warming scenarios are needed to improve ecosystem-level predictions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mesocosm experiment was conducted to evaluate the effects of future climate conditions on photosynthesis and productivity of coastal phytoplankton. Natural phytoplankton assemblages were incubated in field mesocosms under the ambient condition (present condition: ca. 400 ppmv CO2 and ambient temp.), and two future climate conditions (acidification condition: ca. 900 ppmv CO2 and ambient temp.; greenhouse condition: ca. 900 ppmv CO2 and 3 °C warmer than ambient). Photosynthetic parameters of steady-state light responses curves (LCs; measured by PAM fluorometer) and photosynthesis-irradiance curves (P-I curves; estimated by in situ incorporation of 14C) were compared to three conditions during the experiment period. Under acidification, electron transport efficiency (alpha LC) and photosynthetic 14C assimilation efficiency (alpha) were 10% higher than those of the present condition, but maximum rates of relative electron transport (rETRm,LC) and photosynthetic 14C assimilation (PBmax) were lower than the present condition by about 19% and 7%, respectively. In addition, rETRm,LC and alpha LC were not significantly different between and greenhouse conditions, but PBmax and alpha of greenhouse conditions were higher than those of the present condition by about 9% and 30%, respectively. In particular, the greenhouse condition has drastically higher PBmax and alpha than the present condition more than 60% during the post-bloom period. According to these results, two future ocean conditions have major positive effects on the photosynthesis in terms of energy utilization efficiency for organic carbon fixation through the inorganic carbon assimilation. Despite phytoplankton taking an advantage on photosynthesis, primary production of phytoplankton was not stimulated by future conditions. In particular, biomass of phytoplankton was depressed under both acidification and greenhouse conditions after the the pre-bloom period, and more research is required to suggest that some factors such as grazing activity could be important for regulating phytoplankton bloom in the future ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of elevated CO2 and temperature on photosynthesis and calcification in the calcifying algae Halimeda macroloba and Halimeda cylindracea and the symbiont-bearing benthic foraminifera Marginopora vertebralis were investigated through exposure to a combination of four temperatures (28°C, 30°C, 32°C, and 34°C) and four CO2 levels (39, 61, 101, and 203 Pa; pH 8.1, 7.9, 7.7, and 7.4, respectively). Elevated CO2 caused a profound decline in photosynthetic efficiency (FV : FM), calcification, and growth in all species. After five weeks at 34°C under all CO2 levels, all species died. Chlorophyll (Chl) a and b concentration in Halimeda spp. significantly decreased in 203 Pa, 32°C and 34°C treatments, but Chl a and Chl c2 concentration in M. vertebralis was not affected by temperature alone, with significant declines in the 61, 101, and 203 Pa treatments at 28°C. Significant decreases in FV : FM in all species were found after 5 weeks of exposure to elevated CO2 (203 Pa in all temperature treatments) and temperature (32°C and 34°C in all pH treatments). The rate of oxygen production declined at 61, 101, and 203 Pa in all temperature treatments for all species. The elevated CO2 and temperature treatments greatly reduced calcification (growth and crystal size) in M. vertebralis and, to a lesser extent, in Halimeda spp. These findings indicate that 32°C and 101 Pa CO2, are the upper limits for survival of these species on Heron Island reef, and we conclude that these species will be highly vulnerable to the predicted future climate change scenarios of elevated temperature and ocean acidification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To evaluate the effects of temperature and pCO2 on coral larvae, brooded larvae of Pocillopora damicornis from Nanwan Bay, Taiwan (21°56.179' N, 120°44.85' E), were exposed to ambient (419-470 µatm) and high (604-742 µatm) pCO2 at ~25 and ~29 °C in two experiments conducted in March 2010 and March 2012. Larvae were sampled from four consecutive lunar days (LD) synchronized with spawning following the new moon, incubated in treatments for 24 h, and measured for respiration, maximum photochemical efficiency of PSII (F v/F m), and mortality. The most striking outcome was a strong effect of time (i.e., LD) on larvae performance: respiration was affected by an LD × temperature interaction in 2010 and 2012, as well as an LD × pCO2 × temperature interaction in 2012; F v/F m was affected by LD in 2010 (but not 2012); and mortality was affected by an LD × pCO2 interaction in 2010, and an LD × temperature interaction in 2012. There were no main effects of pCO2 in 2010, but in 2012, high pCO2 depressed metabolic rate and reduced mortality. Therefore, differences in larval performance depended on day of release and resulted in varying susceptibility to future predicted environmental conditions. These results underscore the importance of considering larval brood variation across days when designing experiments. Subtle differences in experimental outcomes between years suggest that transgenerational plasticity in combination with unique histories of exposure to physical conditions can modulate the response of brooded coral larvae to climate change and ocean acidification.