6 resultados para Prospective temporal control
em Publishing Network for Geoscientific
Resumo:
A detailed dinoflagellate cyst investigation of the almost continuous Middle Miocene through Pliocene of Ocean Drilling Program Hole 907A in the Iceland Sea has been conducted at 100-kyr resolution. The investigated section is well constrained by magnetostratigraphy, providing for the first time an independent temporal control on a succession of northern high-latitude dinoflagellate cyst bioevents. Based on the highest/lowest occurrences (HO/LO) and highest common occurrence (HCO) of 20 dinoflagellate cyst taxa and one acritarch species, 26 bioevents have been defined and compared with those recorded at selected DSDP, ODP, and IODP sites from the North Atlantic and contiguous seas, and in outcrops and boreholes from the onshore and offshore eastern U.S.A., and the North Sea and Mediterranean basins. Comparisons reveal near-synchronous HOs of the dinoflagellate cysts Batiacasphaera micropapillata (3.8-3.4 Ma, mid-Pliocene) and Reticulatosphaera actinocoronata (4.8-4.2 Ma, Lower Pliocene) across the Nordic Seas and North Atlantic, highlighting their value on a supraregional scale. This probably applies also to Hystrichosphaeropsis obscura (upper Tortonian), when excluding ODP Hole 907A where its sporadic upper stratigraphic range presumably relates to cooling in the early Tortonian. Over a broader time span within the upper Tortonian, the HO of Operculodinium piaseckii likely also permits correlation across the Nordic Seas and North Atlantic, and the HO of Labyrinthodinium truncatum appears useful in the Labrador and Nordic Seas. Biostratigraphic markers useful for regional rather than supraregional correlation are the HOs of Batiacasphaera hirsuta (c. 8.4 Ma, upper Tortonian) and Unipontidinium aquaeductus (c. 13.6-13.9 Ma, upper Langhian), the HCO of the acritarch Decahedrella martinheadii (c. 6.7-6.3 Ma, Messinian), and possibly the LO of Cerebrocysta irregulare sp. nov. (c. 13.8 Ma, uppermost Langhian) across the Nordic Seas. Since Habibacysta tectata, B. micropapillata, R. actinocoronata and D. martinheadii have been observed in the Arctic Ocean, they are potentially useful for high latitude correlations in the polar domain. The LOs of Habibacysta tectata and Unipontidinium aquaeductus suggest a mid- to late Langhian age (15.1-13.7 Ma) for deposits at the base of Hole 907A, thus providing new constraints on the age of basalts at the base of ODP Hole 907A. The stratigraphically important dinoflagellate cysts Cerebrocysta irregulare sp. nov., and Impagidinium elongatum sp. nov. are formally described.
Resumo:
Short-term changes in sea surface conditions controlling the thermohaline circulation in the northern North Atlantic are expected to be especially efficient in perturbing global climate stability. Here we assess past variability of sea surface temperature (SST) in the northeast Atlantic and Norwegian Sea during Marine Isotope Stage (MIS) 2 and, in particular, during the Last Glacial Maximum (LGM). Five high-resolution SST records were established on a meridional transect (53°N-72°N) to trace centennial-scale oscillations in SST and sea-ice cover. We used three independent computational techniques (SIMMAX modern analogue technique, Artificial Neural Networks (ANN), and Revised Analog Method (RAM)) to reconstruct SST from planktonic foraminifer census counts. SIMMAX and ANN reproduced short-term SST oscillations of similar magnitude and absolute levels, while RAM, owing to a restrictive analog selection, appears less suitable for reconstructing "cold end" SST. The SIMMAX and ANN SST reconstructions support the existence of a weak paleo-Norwegian Current during Dansgaard-Oeschger (DO) interstadials number 4, 3, 2, and 1. During the LGM, two warm incursions of 7°C water to occurred in the northern North Atlantic but ended north of the Iceland Faroe Ridge. A rough numerical estimate shows that the near-surface poleward heat transfer from 53° across the Iceland-Faroe Ridge up to to 72° N dropped to less than 60% of the modern value during DO interstadials and to almost zero during DO stadials. Summer sea ice was generally confined to the area north of 70°N and only rarely expanded southward along the margins of continental ice sheets. Internal LGM variability of North Atlantic (>40°N) SST in the GLAMAP 2000 compilation (Sarnthein et al., 2003, doi:10.1029/2002PA000771; Pflaumann et al., 2003, doi:10.1029/2002PA000774) indicates maximum instability in the glacial subpolar gyre and at the Iberian Margin, while in the Nordic Seas, SST was continuously low.
Resumo:
At Ocean Drilling Program (ODP) Site 1090 on the Agulhas Ridge (subantarctic South Atlantic) benthic foraminiferal stable isotope records span the late Oligocene through the early Miocene (25~16 Ma) at a temporal resolution of ?10 kyr. In the same time interval a magnetic polarity stratigraphy can be unequivocally correlated to the geomagnetic polarity timescale (GPTS), thereby providing secure correlation of the isotope record to the GPTS. On the basis of the isotope-magnetostratigraphic correlation we provide refined age calibration of established oxygen isotope events Mi1 through Mi2 as well as several other distinctive isotope events. Our data suggest that the d18O maximum commonly associated with the Oligocene/Miocene (O/M) boundary falls within C6Cn.2r (23.86 Ma). The d13C maximum coincides, within the temporal resolution of our record, with C6Cn.2n/r boundary and hence to the O/M boundary. Comparison of the stable isotope record from ODP Site 1090 to the orbitally tuned stable isotope record from ODP Site 929 across the O/M boundary shows that variability in the two records is very similar and can be correlated at and below the O/M boundary. Site 1090 stable isotope records also provide the first deep Southern Ocean end-member for reconstructions of circulation patterns and late Oligocene to early Miocene climate change. Comparison to previously published records suggests that basin to basin carbon isotope gradients were small or nonexistent and are inconclusive with respect to the direction of deep water flow. Oxygen isotope gradients between sites suggest that the deep Southern Ocean was cold in comparison to the North Atlantic, Indian, and the Pacific Oceans. Dominance of cold Southern Component Deep Water at Site 1090, at least until 17 Ma, suggests that relatively cold circumpolar climatic conditions prevailed during the late Oligocene and early Miocene. We believe that a relatively cold Southern Ocean reflects unrestricted circumpolar flow through the Drake Passage in agreement with bathymetric reconstructions.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
The world's oceans are slowly becoming more acidic. In the last 150 yr, the pH of the oceans has dropped by ~0.1 units, which is equivalent to a 25% increase in acidity. Modelling predicts the pH of the oceans to fall by 0.2 to 0.4 units by the year 2100. These changes will have significant effects on marine organisms, especially those with calcareous skeletons such as echinoderms. Little is known about the possible long-term impact of predicted pH changes on marine invertebrate larval development. Here we predict the consequences of increased CO2 (corresponding to pH drops of 0.2 and 0.4 units) on the larval development of the brittlestar Ophiothrix fragilis, which is a keystone species occurring in high densities and stable populations throughout the shelf seas of northwestern Europe (eastern Atlantic). Acidification by 0.2 units induced 100% larval mortality within 8 d while control larvae showed 70% survival over the same period. Exposure to low pH also resulted in a temporal decrease in larval size as well as abnormal development and skeletogenesis (abnormalities, asymmetry, altered skeletal proportions). If oceans continue to acidify as expected, ecosystems of the Atlantic dominated by this keystone species will be seriously threatened with major changes in many key benthic and pelagic ecosystems. Thus, it may be useful to monitor O. fragilis populations and initiate conservation if needed.
Resumo:
Marine- and terrestrial-derived biomarkers (alkenones, brassicasterol, dinosterol, and long-chain n-alkanes), as well as carbonate, biogenic opal, and ice-rafted debris (IRD), were measured in two sediment cores in the Sea of Okhotsk, which is located in the northwestern Pacific rim and characterized by high primary productivity. Down-core profiles of phytoplankton markers suggest that primary productivity abruptly increased during the global Meltwater Pulse events 1A (about 14 ka) and 1B (about 11 ka) and stayed high in the Holocene. Spatial and temporal distributions of the phytoplankton productivity were found to be consistent with changes in the reconstructed sea ice distribution on the basis of the IRD. This demonstrates that the progress and retreat of sea ice regulated primary productivity in the Sea of Okhotsk with minimum productivity during the glacial period. The mass accumulation rates of alkenones, CaCO3, and biogenic opal indicate that the dominant phytoplankton species during deglaciation was the coccolithophorid, Emiliania huxleyi, which was replaced by diatoms in the late Holocene. Such a phytoplankton succession was probably caused by an increase in silicate supply to the euphotic layer, possibly associated with a change in surface hydrography and/or linked to enhanced upwelling of North Pacific Deep Water.