8 resultados para Propagation waves

em Publishing Network for Geoscientific


Relevância:

40.00% 40.00%

Publicador:

Resumo:

During R/V Meteor-cruise no. 30 4 moorings with 17 current meters were placed on the continental slope of Sierra Leone at depths between 81 and 1058 meters. The observation period started on March 8, 1973, 16.55 hours GMT and lasted 19 days for moorings M30_068MOOR, M30_069MOOR, M30_070MOOR on the slope and 9 days for M30_067MOOR on the shelf. One current meter recorded at location M30_067MOOR for 22 days. Hydrographic data were collected at 32 stations by means of the "Kieler Multi-Meeressonde". Harmonic analysis is applied to the first 15 days of the time series to determine the M2 and S2 tides. By vertically averaging of the Fourier coefficients the field of motion is separated into its barotropic and its baroclinic component. The expected error generated by white Gaussian noise is estimated. To estimate the influence of the particular vertical distribution of the current meters, the barotropic M2 tide is calculated by ommitting and interchanging time series of different moorings. It is shown that only the data of moorings M30_069MOOR, M30_070MOOR and M30_067MOOR can be used. The results for the barotropic M2 tide agree well with the previous publications of other authors. On the slope at a depth of 1000 m there is a free barotropic wave under the influence of the Coriolis-force propagating along the slope with an amplitude of 3.4 cm S**-1. On the shelf, the maximum current is substantially greater (5.8 cm s**-1) and the direction of propagation is perpendicular to the slope. As for the continental slope a separation into different baroclinic modes using vertical eigenmodes is not reasonable, an interpretation of the total baroclinic wave field is tried by means of the method of characteristis. Assuming the continental slope to generate several linear waves, which superpose, baroclinic tidal ellipses are calculated. The scattering of the direction of the major axes M30_069MOOR is in contrast to M30_070MOOR, where they are bundled within an angle of 60°. This is presumably caused by the different character of the bottom topography in the vicinity of the two moorings. A detailed discussion of M30_069MOOR is renounced since the accuracy of the bathymetric chart is not sufficient to prove any relation between waves and topography. The bundeling of the major axes at M30_070MOOR can be explained by the longslope changes of the slope, which cause an energy transfer from the longslope barotropic component to the downslope baroclinic component. The maximum amplitude is found at a depth of 245 m where it is expected from the characteristics originating at the shelf edge. Because of the dominating barotropic tide high coherence is found between most of the current meters. To show the influence of the baroclinic tidal waves, the effect of the mean current is considered. There are two periods nearly opposite longshore mean current. For 128 hours during each of these periods, starting on March 11, 05.00, and March 21, 08.30, the coherences and energy spectra are calculated. The changes in the slope of the characteristics are found in agreement with the changes of energy and coherence. Because of the short periods of nearly constant mean current, some of the calculated differences of energy and coherence are not statistically significant. For the M2 tide a calculation of the ratios of vertically integrated total baroclinic energy and vertically integrated barotropic kinetic energy is carried out. Taking into account both components (along and perpendicular to the slope) the obtained values are 0.75 and 0.98 at the slope and 0.38 at the shelf. If each component is considered separately, the ratios are 0.39 and 1.16 parallel to the slope and 5.1 and 15.85 for the component perpendicular to it. Taking the energy transfer from the longslope component to the doenslope component into account, a simple model yields an energy-ratio of 2.6. Considering the limited application of the theory to the real conditions, the obtained are in agreement with the values calculated by Sandstroem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper ground truth and remotely sensed datasets were used for the investigation and quantification of the impact of Saharan dust on microwave propagation, the verification of theoretical results, and the validation of wind speeds determined by satellite microwave sensors. The influence of atmospheric dust was verified in two different study areas by investigations of single dust storms, wind statistics, wind speed scatter plots divided by the strength of Saharan dust storms, and wind speed differences in dependence of microwave frequencies and dust component of aerosol optical depth. An increase of the deviations of satellite wind speeds to ground truth wind speeds with higher microwave frequencies, with stronger dust storms, and with higher amount of coarse dust aerosols in coastal regions was obtained. Strong Saharan dust storms in coastal areas caused mean relative errors in the determination of wind speed by satellite microwave sensors of 16.3% at 10.7 GHz and of 20.3% at 37 GHz. The mean relative errors were smaller in the open sea area with 3.7% at 10.7 GHz and with 11.9% at 37 GHz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the morpho-sedimentary characterization and interpretations of the assemblage of landforms of the East Greenland continental slope and Greenland Basin, based on swath bathymetry and sub-bottom TOPAS profiles. The interpretation of landforms reveals the glacial influence on recent sedimentary processes shaping the seafloor, including mass-wasting and turbidite flows. The timing of landform development points to a predominantly glacial origin of the sediment supplied to the continental margin, supporting the scenario of a Greenland Ice Sheet extending across the continental shelf, or even to the shelf-edge, during the Last Glacial Maximum (LGM). Major sedimentary processes along the central section of the eastern Greenland Continental Slope, the Norske margin, suggest a relatively high glacial sediment input during the LGM that, probably triggered by tectonic activity, led to the development of scarps and channels on the slope and debris flows on the continental rise. The more southerly Kejser Franz Josef margin has small-scale mass-wasting deposits and an extensive turbidite system that developed in relation to both channelised and unconfined turbidity flows which transferred sediments into the deep Greenland Basin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed information about the sediment properties and microstructure can be provided through the analysis of digital ultrasonic P wave seismograms recorded automatically during full waveform core logging. The physical parameter which predominantly affects the elastic wave propagation in water-saturated sediments is the P wave attenuation coefficient. The related sedimentological parameter is the grain size distribution. A set of high-resolution ultrasonic transmission seismograms (ca. 50-500 kHz), which indicate downcore variations in the grain size by their signal shape and frequency content, are presented. Layers of coarse-grained foraminiferal ooze can be identified by highly attenuated P waves, whereas almost unattenuated waves are recorded in fine-grained areas of nannofossil ooze. Color-encoded pixel graphics of the seismograms and instantaneous frequencies present full waveform images of the lithology and attenuation. A modified spectral difference method is introduced to determine the attenuation coefficient and its power law a = kfn. Applied to synthetic seismograms derived using a "constant Q" model, even low attenuation coefficients can be quantified. A downcore analysis gives an attenuation log which ranges from ca. 700 dB/m at 400 kHz and a power of n = 1-2 in coarse-grained sands to few decibels per meter and n ? 0.5 in fine-grained clays. A least squares fit of a second degree polynomial describes the mutual relationship between the mean grain size and the attenuation coefficient. When it is used to predict the mean grain size, an almost perfect coincidence with the values derived from sedimentological measurements is achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coastal communities around the world face increasing risk from flooding as a result of rising sea level, increasing storminess, and land subsidence. Salt marshes can act as natural buffer zones, providing protection from waves during storms. However, the effectiveness of marshes in protecting the coastline during extreme events when water levels and waves are highest is poorly understood. Here, we experimentally assess wave dissipation under storm surge conditions in a 300-m-long wave flume that contains a transplanted section of natural salt marsh. We find that the presence of marsh vegetation causes considerable wave attenuation, even when water levels and waves are high. From a comparison with experiments without vegetation, we estimate that up to 60% of observed wave reduction is attributed to vegetation. We also find that although waves progressively flatten and break vegetation stems and thereby reduce dissipation, the marsh substrate remained remarkably stable and resistant to surface erosion under all conditions.The effectiveness of storm wave dissipation and the resilience of tidal marshes even at extreme conditions suggest that salt marsh ecosystems can be a valuable component of coastal protection schemes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The physical (temperature, salinity, velocity) and biogeochemical (oxygen, nitrate) structure of an oxygen depleted coherent, baroclinic, anticyclonic mode-water eddy (ACME) is investigated using high-resolution autonomous glider and ship data. A distinct core with a diameter of about 70 km is found in the eddy, extending from about 60 to 200 m depth and. The core is occupied by fresh and cold water with low oxygen and high nitrate concentrations, and bordered by local maxima in buoyancy frequency. Velocity and property gradient sections show vertical layering at the flanks and underneath the eddy characteristic for vertical propagation (to several hundred-meters depth) of near inertial internal waves (NIW) and confirmed by direct current measurements. A narrow region exists at the outer edge of the eddy where NIW can propagate downward. NIW phase speed and mean flow are of similar magnitude and critical layer formation is expected to occur. An asymmetry in the NIW pattern is seen that possible relates to the large-scale Ekman transport interacting with ACME dynamics. NIW/mean flow induced mixing occurs close to the euphotic zone/mixed layer and upward nutrient flux is expected and supported by the observations. Combing high resolution nitrate (NO3-) data with the apparent oxygen utilization (AOU) reveals AOU:NO3- ratios of 16 which are much higher than in the surrounding waters (8.1). A maximum NO3- deficit of 4 to 6 µmol kg-1 is estimated for the low oxygen core. Denitrification would be a possible explanation. This study provides evidence that the recycling of NO3-, extracted from the eddy core and replenished into the core via the particle export, may quantitatively be more important. In this case, the particulate phase is of keys importance in decoupling the nitrogen from the oxygen cycling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed information about the sediment properties and microstructure can be provided through the analysis of digital ultrasonic P wave seismograms recorded automatically during full waveform core logging. The physical parameter which predominantly affects the elastic wave propagation in water-saturated sediments is the P wave attenuation coefficient. The related sedimentological parameter is the grain size distribution. A set of high-resolution ultrasonic transmission seismograms (-50-500 kHz), which indicate downcore variations in the grain size by their signal shape and frequency content, are presented. Layers of coarse-grained foraminiferal ooze can be identified by highly attenuated P waves, whereas almost unattenuated waves are recorded in fine-grained areas of nannofossil ooze. Color -encoded pixel graphics of the seismograms and instantaneous frequencies present full waveform images of the lithology and attenuation. A modified spectral difference method is introduced to determine the attenuation coefficient and its power law a = kF. Applied to synthetic seismograms derived using a "constant Q" model, even low attenuation coefficients can be quantified. A downcore analysis gives an attenuation log which ranges from -700 dB/m at 400 kHz and a power of n=1-2 in coarse-grained sands to few decibels per meter and n :s; 0.5 in fine-grained clays. A least squares fit of a second degree polynomial describes the mutual relationship between the mean grain size and the attenuation coefficient. When it is used to predict the mean grain size, an almost perfect coincidence with the values derived from sedimentological measurements is achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Andaman Sea and other macrotidal semi-enclosed tropical seas feature large amplitude internal waves (LAIW). Although LAIW induce strong fluctuations i.e. of temperature, pH, and nutrients, their influence on reef development is so far unknown. A better-known source of disturbance is the monsoon affecting corals due to turbulent mixing and sedimentation. Because in the Andaman Sea both, LAIW and monsoon, act from the same westerly direction their relative contribution to reef development is difficult to discern. Here, we explore the framework development in a number of offshore island locations subjected to differential LAIW- and SW-monsoon impact to address this open question. Cumulative negative temperature anomalies - a proxy for LAIW impact - explained a higher percentage of the variability in coral reef framework height, than sedimentation rates which resulted mainly from the monsoon. Temperature anomalies and sediment grain size provided the best correlation with framework height suggesting that so far neglected subsurface processes (LAIW) play a significant role in shaping coral reefs.