4 resultados para Production systems
em Publishing Network for Geoscientific
Resumo:
Continuous measurements between 0 and 200 m depth were performed every 2 h over two separate periods of four days at a station in the open northwestern Mediterranean Sea (Dyfamed Station) during the Dynaproc cruise in May 1995. Estimates of the daily variations in profiles of temperature, partial pressure of CO2, oxygen, chlorophyll a and nutrients were obtained. The distributions of the various physical and chemical properties were clearly different during the two time series, which were separated by a period of 11 days during which a wind event occurred. The mean daily utilization or production due to biological processes of dissolved inorganic carbon (DIC), nitrate+nitrite and oxygen were calculated along isopycnals using a vertical diffusion model. Between the surface and about 20 m depth, DIC was consumed and O2 released during the two time series while the nitrate+nitrite concentrations as well as supplies were zero. After the wind event, the O2 : C : N ratios of consumption (or production) were, on average, near the Redfield ratios, but during the first time series, the C : N utilization ratio between 20 and 35 m was two to three times that of Redfield stoichiometry and the oxygen release was low. The integrated net community production (NCP) in terms of carbon was equivalent during the two time series, whereas the chlorophyll a biomass was twice as high, on average, during the first time series but did decrease. These results imply that the production systems were different during the two periods. The first time series corresponds to a period at the end of production, due to the nutrient depletion in the euphotic layer. The formation of degradation products of the living material in dissolved organic form is probably important as indicated by the high C : N utilization ratios. The second time series corresponds to a reactivation of the primary production due to the upward shift of nutrients after the wind event.
Resumo:
The ocean off NW Africa is the second most important coastal upwelling system with a total annual primary production of 0.33 Gt of carbon per year (Carr in Deep Sea Res II 49:59-80, 2002). Deep ocean organic carbon fluxes measured by sediment traps are also fairly high despite low biogenic opal fluxes. Due to a low supply of dissolved silicate from subsurface waters, the ocean off NW Africa is characterized by predominantly carbonate-secreting primary producers, i.e. coccolithophorids. These algae which are key primary producers since millions of years are found in organic- and chlorophyll-rich zooplankton fecal pellets, which sink rapidly through the water column within a few days. Particle flux studies in the Mauretanian upwelling area (Cape Blanc) confirm the hypothesis of Armstrong et al. (Deep Sea Res II 49:219-236, 2002) who proposed that ballast availability, e.g. of carbonate particles, is essential to predict deep ocean organic carbon fluxes. The role of dust as ballast mineral for organic carbon, however, must be also taken into consideration in the coastal settings off NW Africa. There, high settling rates of larger particles approach 400 m day**-1, which may be due to a particular composition of mineral ballast. An assessment of particle settling rates from opal-production systems in the Southern Ocean of the Atlantic Sector, in contrast, provides lower values, consistent with the assumptions of Francois et al. (Global Biogeochem Cycles 16(4):1087, 2002). Satellite chlorophyll distributions, particle distributions and fluxes in the water column off NW Africa as well as modelling studies suggest a significant lateral flux component and export of particles from coastal shelf waters into the open ocean. These transport processes have implications for paleo-reconstructions from sediment cores retrieved at continental margin settings.
Resumo:
The flux of materials to the deep sea is dominated by larger, organic-rich particles with sinking rates varying between a few meters and several hundred meters per day. Mineral ballast may regulate the transfer of organic matter and other components by determining the sinking rates, e.g. via particle density. We calculated particle sinking rates from mass flux patterns and alkenone measurements applying the results of sediment trap experiments from the Atlantic Ocean. We have indication for higher particle sinking rates in carbonate-dominated production systems when considering both regional and seasonal data. During a summer coccolithophorid bloom in the Cape Blanc coastal upwelling off Mauritania, particle sinking rates reached almost 570 m per day, most probably due the fast sedimentation of densely packed zooplankton fecal pellets, which transport high amounts of organic carbon associated with coccoliths to the deep ocean despite rather low production. During the recurring winter-spring blooms off NW Africa and in opal-rich production systems of the Southern Ocean, sinking rates of larger particles, most probably diatom aggregates, showed a tendency to lower values. However, there is no straightforward relationship between carbonate content and particle sinking rates. This could be due to the unknown composition of carbonate and/or the influence of particle size and shape on sinking rates. It also remains noticeable that the highest sinking rates occurred in dust-rich ocean regions off NW Africa, but this issue deserves further detailed field and laboratory investigations. We obtained increasing sinking rates with depth. By using a seven-compartment biogeochemical model, it was shown that the deep ocean organic carbon flux at a mesotrophic sediment trap site off Cape Blanc can be captured fairly well using seasonal variable particle sinking rates. Our model provides a total organic carbon flux of 0.29 Tg per year down to 3000 m off the NW African upwelling region between 5 and 35° N. Simple parameterisations of remineralisation and sinking rates in such models, however, limit their capability in reproducing the flux variation in the water column.
Resumo:
We have analysed alkenones in 149 surface sediments from the eastern South Atlantic in order to establish a sediment-based calibration of the U37K' paleotemperature index. Our study covers the major tropical to subpolar production systems and sea-surface temperatures (SST's) between 0° and 27°C. In order to define the most suitable calibration for this region, the U37K' values were correlated to seasonal, annual, and production-weighted annual mean atlas temperatures and compared to previously published culture and core-top calibrations. The best linear correlation between U37K' and SST was obtained using annual mean SST from 0 to 10 m water depth (U37K' = 0.033 T + 0.069, r**2 = 0.981). Data scattering increased significantly using temperatures of waters deeper than 20 m, suggesting that U37K' reflects mixed-layer SST and that alkenone production at thermocline depths was not high enough to significantly bias the mixed-layer signal. Regressions based on both production-weighted and on actual annual mean atlas SST were virtually identical, indicating that regional variations in the seasonality of primary production have no discernible effect on the U37K' vs. SST relationship. Comparison with published core-top calibrations from other oceanic regions revealed a high degree of accordance. We, therefore, established a global core-top calibration using U37K' data from 370 sites between 60°S and 60°N in the Atlantic, Indian, and Pacific Oceans and annual mean atlas SST (0-29°C) from 0 m water depth. The resulting relationship (U37K' = 0.033 T + 0.044, r**2 = 958) is identical within error limits to the widely used E. huxleyi calibrations of and attesting their general applicability. The observation that core-top calibrations extending over various biogeographical coccolithophorid zones are strongly linear and in better accordance than culture calibrations suggests that U37K' is less species-dependent than is indicated by culture experiments. The results also suggest that variations in growth rate of algae and nutrient availability do not significantly affect the sedimentary record of U37K' in open ocean environments.