72 resultados para Production humus of worm

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sediment trap samples from OMEX 2 (49°N, 13°W) provide a continuous record of the seasonal succession of planktonic foraminifera in the midlatitude North Atlantic and reveal a complex relationship between periods of production and specific hydrographic conditions. Neogloboquadrina pachyderma dextral coiling (d.), Globigerina bulloides, and Globorotalia inflata are found in great numbers during both the spring and summer seasons, whereas Globigerina quinqueloba, Globorotalia hirsuta, Globorotalia scitula, and Globigerinita glutinata are associated predominantly with the increase in productivity during the spring bloom. Globigerinella aequilateralis, Orbulina universa, and Globigerinoides sacculifer are restricted to late summer conditions following the establishment of a warm, well-stratified surface ocean. An annually integrated fauna from the sediment trap, comprising ~13,000 individuals, is used to evaluate the accuracy of five faunal-based statistical methods of paleotemperature estimation. All of the temperature reconstruction techniques produce estimates of ~16°C and ~11°C for summer and winter surface temperature, respectively, which are in excellent agreement with regional hydrographic data and suggest that the sediment trap assemblage is well represented in the core top faunas. Analysis of the key species that dominate the OMEX 2 sediment trap fauna, G. bulloides, G. inflata, and N. pachyderma d., based on d18O derived temperatures from North Atlantic core top samples, suggests that seasonal variations in planktonic foraminiferal production are nonuniform across the midlatitudes and that this is likely to complicate reconstructing past seasonal hydrographic dynamics using these taxa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

From July 4 to 18,1995 surface chlorophyll a concentrations (C_cs) and integral primary production (C_ps) were studied in the northeastern part of the Norwegian Sea (73°42'N; 13°16'E), over a test area where an accident of the nuclear submarine Komsomolets had taken place. It was found that during this interval C_cs decreased by factor of about 3.3 (from 0.78 to 0.24 mg/m**3); average chlorophyll concentration within the photo-synthetic layer (C_cl) decreased by factor of about 3.5 (from 0.97 to 0.28 mg/m**3). The value of C_ps in the water column varied slightly (from 445 to 539 mg C/m**2 per day), since decrease in C_cl was compensated both by 1.5-fold growth of the photosynthetic layer thickness (from 40 to 60 m) and by 2.1-fold increase in its average assimilation number (from 0.58 to 1.20 mg C/mg chl a per hour). Monthly averages of C_ps were obtained from published data on seasonal C_cs changes and on the level of incident solar irradiation. They were found to be less than 100 mg C/m**2 per day in March and October and 100-500 mg C/m**2 per day in April-June. Annual primary production calculated from above values was equal to 105 g C/m**2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In October and November 2002, high and relatively high values of chlorophyll a concentration at the sea surface (Cchl) were observed in the English Channel (0.47 mg/m**3), in waters of the North Atlantic Current (0.25 mg/m**3 ), in the tropical and subtropical anticyclonic gyres (0.07-0.42 mg/m**3), and also in the southwestern region of the southern subtropical anticyclonic gyre (usually 0.11-0.23 mg/m**3). The central regions of the southern subtropical anticyclonic gyre (SATG) and the North Atlantic tropical gyre (NATR) were characterized by lower values of Cchl (0.02-0.08 mg/m**3 for the SATG and 0.07-0.14 mg/m**3 for the NATR). At most of the SATG stations, values of surface primary production (Cphs) varied from 2.5 to 5.5 mg C/m**3 per day and were mainly defined by fluctuations of Cchl (r = +0.78) rather than by those of the assimilation number (r = +0.54). Low assimilation activity of phytoplankton in these waters (1.3-4.6 mg chl a per hour) pointed to a lack of nutrients. Analysis of variability of their concentration and composition of photosynthetic pigments showed that, in waters north of 30°N, the growth of phytoplankton was mostly restricted by deficiency of nitrogen, while, in more southern areas, at the majority of stations (about 60%), phosphorus concentrations were minimal. At low concentrations of nitrates and nitrites, ammonium represented itself as a buffer that prevented planktonic algae from extreme degrees of nitric starvation. In tropical waters and in waters of the SATG, primary production throughout the water column varied from 240 to 380 mg C/m**2 30° per day. This level of productivity at stations with low values of C chl (<0.08 mg/m**3) was provided by a well-developed deep chlorophyll maximum and high transparency of water. Light curves of photosynthesis based on in situ measurements point to high efficiency of utilizing penetrating solar radiation by phytoplankton on cloudy days.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the effect of suspended sediments on the vital rates of the copepods Calanus finmarchicus, Pseudocalanus sp. and Metridia longa in a Greenland sub-Arctic fjord. The fjord had a gradient of suspended particulate matter (SPM) with high concentrations (>50 mg/L) in the inner fjord due to glacial melt water runoff. Laboratory experiments showed that when feeding on the diatom Thalassiosira weissflogii specific ingestion rates were low at high concentrations of suspended sediment for C. finmarchicus (>20 mg/L) and Pseudocalanus sp. (>50 mg/L), while no effect was found for M. longa. For C. finmarchicus, a relatively constant fecal pellet production (FPP) and fecal pellet volume suggested ingestion of sediment, which probably led to reduction in egg production rates (EPRs) at high sediment concentrations. For Pseudocalanus sp., FPP decreased with increasing sediment concentrations, while no effect was observed on EPR. No significant difference was observed in FPP for M. longa feeding on the diatom T. weissflogii compared to the ciliate Strombidium sulcatum. The study shows that high sediment concentrations influence the capability of carbon turnover in C. finmarchicus and Pseudocalanus sp., while M. longa appears to be more tolerant to high sediment loads. Therefore, high concentrations of SPM could potentially influence the species composition of glacially influenced fjords.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies were carried out mostly in the area of RMS Titanic wreck site (41°44'N, 49°57'W) located above the continental slope and the south of the Grand Banks of Newfoundland. In a period from 18.06 to 24.09.2001 five surveys of production characteristics of surface phytoplankton were conducted over 5-9 days. Mean values of these characteristics obtained during the surveys were 9.2-11.7 mg C/m**3 per day for primary production (C_phs), 0.102-0.188 mg/m**3 for chlorophyll a (C_chls), and 4.44-7.42 mg C/mg chl. a per hour for assimilation number (AN). The main reason for low C_phs variability was a significant inverse relationship (R=-0.66) between AN and C_chls found over the research area. When cold shelf waters dominated in the area (27.07 to 19.08.2001), C_chls values for the slope region (0.125+/-0.031 µg/l) and for the outer shelf (0.130+/-0.040 µg/l) were similar. During strengthening of influence of warmer slope waters within area (from 29.08 to 13.09.2001), C_chls concentration within surface waters of the outer shelf was 0.152+/-0.039 µg/l and exceeded one for the slope region (0.094+/-0.004 µg/l) by factor 1.6. Against the background of low Cchls values, the High values of integral primary production in the water column (510-1010 mg C/m**2 per day) at low C_chls values measured within the area were determined both by high assimilation activity of phytoplankton and by the deep (30-40 m) maximum of primary production. Main reasons for formation of such a maximum were high chlorophyll concentration within the layer of the deep chlorophyll maximum (up to 0.5-2.5 µg/l) and in the relatively high solar irradiance within this layer varying from 1.4 to 8.6% of subsurface PAR.