26 resultados para Procaspase-2S
em Publishing Network for Geoscientific
Resumo:
We present uranium-thoriumchronology for a 102 mcore through a Pleistocene reef at Tahiti (French Polynesia) sampled during IODP Expedition 310 "Tahiti Sea Level". We employ total and partial dissolution procedures on the older coral samples to investigate the diagenetic overprint of the uranium-thoriumsystem. Although alteration of the U-Th system cannot be robustly corrected, diagenetic trends in the U-Th data, combined with sea level and subsidence constraints for the growth of the corals enables the age of critical samples to be constrained to marine isotope stage 9. We use the ages of the corals, together with d18O based sea-level histories, to provide maximum constraints on possible paleo water-depths. These depth constraints are then compared to independent depth estimates based on algal and foraminiferal assemblages, microbioerosion patterns, and sedimentary facies, confirming the accuracy of these paleo water-depth estimates. We also use the fact that corals could not have grown above sea level to place amaximumconstraint on the subsidence rate of Tahiti to be 0.39 m ka**-1,with the most likely rate being close to the existing minimum estimate of 0.25m ka**-1.
Resumo:
Paleomagnetic studies on sediments recovered during Leg 136 have yielded a polarity reversal sequence that can be compared with the global magnetic reversal time scale to establish a sedimentation rate for Hole 842B. This sedimentation rate is substantially higher than that normally observed in the central Pacific basin probably as a result of the contribution of volcanic ash to the normal pelagic sources of sediment. The basalt samples from the oceanic crust at Site 843 have been used to determine a paleolatitude of 10.2°S for the 110±2 m.y.-old crust from this site. Detailed studies of the polarity transitions yielded few intermediate directions, but these few records provide support for the "Americas" transitional path observed at other continental and marine sites in Europe and North America.
Resumo:
The application of radiogenic isotopes to the study of Cenozoic circulation patterns in the South Pacific Ocean has been hampered by the fact that records from only equatorial Pacific deep water have been available. We present new Pb and Nd isotope time series for two ferromanganese crusts that grew from equatorial Pacific bottom water (D137-01, 'Nova', 7219 m water depth) and southwest Pacific deep water (63KD, 'Tasman', 1700 m water depth). The crusts were dated using 10Be/9Be ratios combined with constant Co-flux dating and yield time series for the past 38 and 23 Myr, respectively. The surface Nd and Pb isotope distributions are consistent with the present-day circulation pattern, and therefore the new records are considered suitable to reconstruct Eocene through Miocene paleoceanography for the South Pacific. The isotope time series of crusts Nova and Tasman suggest that equatorial Pacific deep water and waters from the Southern Ocean supplied the dissolved trace metals to both sites over the past 38 Myr. Changes in the isotopic composition of crust Nova are interpreted to reflect development of the Antarctic Circumpolar Current and changes in Pacific deep water circulation caused by the build up of the East Antarctic Ice Sheet. The Nd isotopic composition of the shallower water site in the southwest Pacific appears to have been more sensitive to circulation changes resulting from closure of the Indonesian seaway.
Resumo:
High resolution pore-water dissolved Ba concentration-depth profiles were determined at seven sites across an Equatorial Pacific productivity gradient from 12°S to 9°N, at 140°W. These data are important for understanding the physical, chemical, and biological controls on Ba recycling in the ocean, and for evaluating the paleo-oceanographic significance of Ba content in central Equatorial Pacific sediments. Pore-water Ba concentrations at all sites are higher than in the overlying bottom water, leading to a diffusive flux of Ba into the ocean. A pronounced subsurface concentration maximum exceeding barite solubility characterizes the dissolved Ba pore-water profiles, suggesting that the Ba regenerated in the upper few millimeters of sediment is not controlled by barite solubility. A few centimeters down-core Ba concentrations reach a relatively constant value of approximately barite saturation. The benthic Ba flux shows a clear zonal trend, with a maximum between 2°S and 2°N, most probably due to higher productivity at the equatorial divergence zone, and with lowest values at the southern and northern extremes of the transect. The dissolved Ba flux between 2°S and 2°N is ~30 nmol/cm**2 yr and drops to 6 nmol/cm**2 yr at 12°S. Even the lowest fluxes are significantly higher than those previously reported for the open ocean. In the Equatorial Pacific the calculated Ba recycling efficiency is about 70%. Thus, ~30% of the particulate Ba flux to the deep ocean is preserved in the sediments, compared with less than 1% for organic carbon and ~5% for biogenic silica. Mass balance calculation of the oceanic Ba cycle, using a two-box model, implies benthic Ba fluxes similar to those reported here for a steady-state ocean.
Resumo:
We investigate the redistribution of terrigenous materials in the northeastern (NE) South American continental margin during slowdown events of the Atlantic Meridional Overturning Circulation (AMOC). The compilation of stratigraphic data from 108 marine sediment cores collected across the western tropical Atlantic shows an extreme rise in sedimentation rates off the Parnaíba River mouth (about 2°S) during Heinrich Stadial 1 (HS1, 18-15 ka). Sediment core GeoB16206-1, raised offshore the Parnaíba River mouth, documents relatively constant 143Nd/144Nd values (expressed as epsilonNd(0)) throughout the last 30 ka. Whereas the homogeneous epsilonNd(0) data support the input of fluvial sediments by the Parnaíba River from the same source area directly onshore, the increases in Fe/Ca, Al/Si and Rb/Sr during HS1 indicate a marked intensification of fluvial erosion in the Parnaíba River drainage basin. In contrast, the epsilonNd(0) values from sediment core GeoB16224-1 collected off French Guiana (about 7°N) suggest Amazon-sourced materials within the last 30 ka. We attribute the extremely high volume of terrigenous sediments deposited offshore the Parnaíba River mouth during HS1 to (i) an enhanced precipitation in the catchment region and (ii) a reduced North Brazil Current, which are both associated with a weakened AMOC.
Resumo:
Much progress has been made in estimating recurrence intervals of great and giant subduction earthquakes using terrestrial, lacustrine, and marine paleoseismic archives. Recent detailed records suggest these earthquakes may have variable recurrence periods and magnitudes forming supercycles. Understanding seismic supercycles requires long paleoseismic archives that record timing and magnitude of such events. Turbidite paleoseismic archives may potentially extend past earthquake records to the Pleistocene and can thus complement commonly shorter-term terrestrial archives. However, in order to unambiguously establish recurring seismicity as a trigger mechanism for turbidity currents, synchronous deposition of turbidites in widely spaced, isolated depocenters has to be ascertained. Furthermore, characteristics that predispose a seismically active continental margin to turbidite paleoseismology and the correct sample site selection have to be taken into account. Here we analyze 8 marine sediment cores along 950 km of the Chile margin to test for the feasibility of compiling detailed and continuous paleoseismic records based on turbidites. Our results suggest that the deposition of areally widespread, synchronous turbidites triggered by seismicity is largely controlled by sediment supply and, hence, the climatic and geomorphic conditions of the adjacent subaerial setting. The feasibility of compiling a turbidite paleoseismic record depends on the delicate balance between sufficient sediment supply providing material to fail frequently during seismic shaking and sufficiently low sedimentation rates to allow for coeval accumulation of planktonic foraminifera for high-resolution radiocarbon dating. We conclude that offshore northern central Chile (29-32.5°S) Holocene turbidite paleoseismology is not feasible, because sediment supply from the semi-arid mainland is low and almost no Holocene turbidity-current deposits are found in the cores. In contrast, in the humid region between 36 and 38°S frequent Holocene turbidite deposition may generally correspond to paleoseismic events. However, high terrigenous sedimentation rates prevent high-resolution radiocarbon dating. The climatic transition region between 32.5 and 36°S appears to be best suited for turbidite paleoseismology.
Resumo:
Patterns of distribution and variations of group and monosaccharide compositions of carbohydrates in suspended matter of the Pacific Ocean were studied. It is shown that carbohydrate content of surface ocean waters depends on reproduction of organic matter by phytoplankton. Water-insoluble polysaccharides (average 77.9% of total) predominate in composition of carbohydrates in suspended matter. Water-soluble polysaccharides and oligosaccharides were detected in considerably smaller quantities (average 12.4 and 7.3% respectively). Free monosaccharides were not detected. The main sugars in all isolated groups of carbohydrates of suspended matter are hexoses, which account for 90.8% in oligosaccharides, 64.9% in water-soluble polysaccharides, and 69.8% in water-insoluble polysaccharides. Determination of monosaccharide composition of carbohydrates in suspension showed that apparently they basically consist of mixture of reserve and structural polysaccharides (or their residues) of phytoplankton organisms.
Resumo:
This study addresses changes in the absolute magnitude and spatial geometry of particle flux and export production in a meridional transect across the central equatorial Pacific Ocean's upwelling system during oxygen isotope Stage 11 and Stage 12 and compares these time periods to the current Holocene interglacial system. Temporal and spatial variability in several chemical proxies of export production, and in particular the distributions of Ba, scavenged Al, and P, are studied in a suite of sediment cores gathered along a cross-equator transect at 5°S, 2°S, 0°, 2°N, and 4°N. Because this latitudinal range preserves strong gradients in biogenic particle flux in the modern equatorial Pacific Ocean, we are able to assess variations in the relative magnitude of export production as well as the meridional width of the equatorial system through the late Quaternary glacial/interglacial cycles. During interglacial oxygen isotope Stage 11 the chemical proxies each indicate lower particle flux and export production than during Stage 12. These records are consistent throughout the transect during this time period, but geographic narrowing (during the interglacial) and widening (during the glacial) of the meridional gradient also occurs. Although carbonate concentration varies dramatically through glacial/interglacial cycles at all latitudes studied, the productivity proxies record only minimal glacial/interglacial change at 5°S and 4°N, indicating that the carbonate minima at these latitudes is controlled dominantly by dissolution rather than production. The chemical data indicate that although the spatial geometry of the system during Stages 11 and 12 indicates maximum productivity at the equator during both glacial and interglacial conditions, the absolute magnitude of export production integrated from 5°S to 4°N during Stage 11 was 25-50% less than during Stage 12, and also was 25-50% less than it is now.