16 resultados para Prince Edward Island
em Publishing Network for Geoscientific
Resumo:
Three Spanish Antarctic research cruises (Ant-8611, Bentart-94 and Bentart-95) were carried out in the South Shetland Archipelago (Antarctic Peninsula) and Scotia Arc (South Orkney, South Sandwich and South Georgia archipelagos) on the continental shelf and upper slope (10-600 m depth). They have contributed to our knowledge about ascidian distribution and the zoogeographical relationships with the neighbouring areas and the other Subantarctic islands. The distribution of ascidian species suggests that the Scotia Arc is divided into two sectors, the South Orkney Archipelago, related to the Antarctic Province, and the South Georgia Archipelago (probably including the South Sandwich Archipelago), which is intermediate between the Antarctic Province and the Magellan region.
Resumo:
Question: How do interactions between the physical environment and biotic properties of vegetation influence the formation of small patterned-ground features along the Arctic bioclimate gradient? Location: At 68° to 78°N: six locations along the Dalton Highway in arctic Alaska and three in Canada (Banks Island, Prince Patrick Island and Ellef Ringnes Island). Methods: We analysed floristic and structural vegetation, biomass and abiotic data (soil chemical and physical parameters, the n-factor [a soil thermal index] and spectral information [NDVI, LAI]) on 147 microhabitat releves of zonalpatterned-ground features. Using mapping, table analysis (JUICE) and ordination techniques (NMDS). Results: Table analysis using JUICE and the phi-coefficient to identify diagnostic species revealed clear groups of diagnostic plant taxa in four of the five zonal vegetation complexes. Plant communities and zonal complexes were generally well separated in the NMDS ordination. The Alaska and Canada communities were spatially separated in the ordination because of different glacial histories and location in separate floristic provinces, but there was no single controlling environmental gradient. Vegetation structure, particularly that of bryophytes and total biomass, strongly affected thermal properties of the soils. Patterned-ground complexes with the largest thermal differential between the patterned-ground features and the surrounding vegetation exhibited the clearest patterned-ground morphologies.
Resumo:
Basalts from DSDP Sites 248, 249, 250 and 251 in the southwestern Indian Ocean formed in a complex tectonic region affected by the separation of Africa and South America. The different ages and variable geochemical features of these DSDP basalts probably reflect this tectonic complexity. For example, Site 251 on the flanks of the Southwest Indian Ridge is represented by normal MORB which probably originated at the Southwest Indian Ridge. Site 250 in the Mozambique Basin includes an older incompatible- element enriched unit which may represent basalt associated with the Prince Edward Fracture Zone; the upper unit is normal MORB. Basalts at Site 248 also in the Mozambique Basin are geochemically very unlike MORB and have strong continental affinities; they are also comparable in age to some of the continental Karroo basalts. They appear to be related to a subcontinental mantle source or to contamination by continental basement associated with the tectonic elevation of the Mozambique Ridge. Basalts from Site 249 on the Mozambique Ridge are relatively weathered but appear to be normal MORB. Their age, location, and composition are consistent with their origin at an early Cretaceous rift which has been postulated to have separated the Falkland Plateau from the Mozambique Ridge.