108 resultados para Pressure-volume Curves

em Publishing Network for Geoscientific


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The source rock potential of Cretaceous organic rich whole rock samples from deep sea drilling project (DSDP) wells offshore southwestern Africa was investigated using bulk and quantitative pyrolysis techniques. The sample material was taken from organic rich intervals of Aptian, Albian and Turonian aged core samples from DSDP site 364 offshore Angola, DSDP well 530A north of the Walvis Ridge offshore Namibia, and DSDP well 361 offshore South Africa. The analytical program included TOC, Rock-Eval, pyrolysis GC, bulk kinetics and micro-scale sealed vessel pyrolysis (MSSV) experiments. The results were used to determine differences in the source rock petroleum type organofacies, petroleum composition, gas/oil ratio (GOR) and pressure-volume-temperature (PVT) behavior of hydrocarbons generated from these black shales for petroleum system modeling purposes. The investigated Aptian and Albian organic rich shales proved to contain excellent quality marine kerogens. The highest source rock potential was identified in sapropelic shales in DSDP well 364, containing very homogeneous Type II and organic sulfur rich Type IIS kerogen. They generate P-N-A low wax oils and low GOR sulfur rich oils, whereas Type III kerogen rich silty sandstones of DSDP well 361 show a potential for gas/condensate generation. Bulk kinetic experiments on these samples indicate that the organic sulfur contents influence kerogen transformation rates, Type IIS kerogen being the least stable. South of the Walvis Ridge, the Turonian contains predominantly a Type III kerogen. North of the Walvis Ridge, the Turonian black shales contain Type II kerogen and have the potential to generate P-N-A low and high wax oils, the latter with a high GOR at high maturity. Our results provide the first compositional kinetic description of Cretaceous organic rich black shales, and demonstrate the excellent source rock potential, especially of the Aptian-aged source rock, that has been recognized in a number of the South Atlantic offshore basins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In an investigation of gas hydrates in deep ocean sediments, gas samples from Deep Sea Drilling Project Site 533 on the Blake Outer Ridge in the northwest Atlantic were obtained for molecular and isotopic analyses. Gas samples were collected from the first successful deployment of a pressure core barrel (PCB) in a hydrate region. The pressure decline curves from two of the four PCB retrievals at in situ pressures suggested the presence of small amounts of gas hydrates. Compositional and isotopic measurements of gases from several points along the pressure decline curve indicated that (1) biogenic methane (d13C = -68 per mil; C1/C2 = 5000) was the dominant gas (>90%); (2) little fractionation in the C1/C2 ratio or the C carbon isotopic composition occurred as gas hydrates decomposed during pressure decline experiments; (3) the percent of C3, i-C4, and CO2 degassed increased as the pressure declined, indicating that these molecules may help stabilize the hydrate structure; (4) excess nitrogen was present during initial degassing; and (5) C1/C2 ratios and isotopic ratios of C gases were similar to those obtained from conventional core sampling. The PCB gas also contained trace amounts of saturated, acyclic, cyclic, and aromatic C5-C14 hydrocarbons, as well as alkenes and tetrahydrothiophenes. Gas from a decomposed specimen of gas hydrate had similar molecular and isotopic ratios to the PCB gas (d13C of -68 per mil for methane and a C1/C2 ratio of about 6000). Regular trends in the d13C of methane (about -95 to -60 per mil) and C1/C2 ratios (about 25000 to 2000) were observed with depth. Capillary gas chromatography (GC) and total scanning fluorescence measurements of extracted organic material were characteristic of hydrocarbons dominated by a marine source, though significant amounts of perylene were also present.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Compaction curves for 11 samples from the mixed sediments and calcareous chalk with clay from the Caribbean Sites 999 and 1001 are discussed with reference to compaction curves for calcareous ooze and chalk of the Ontong Java Plateau (Leg 130). The burial history is discussed from preconsolidation data and present burial conditions and suggests a removal of ~400 m of sediment at the hiatus 166 meters below seafloor (mbsf) at Site 1001. This interpretation predicts a previous burial to >500 mbsf for depth intervals containing microstylolites, which corresponds to observations at Sites 999 and 807 (Ontong Java Plateau). Thus, data from three sites from two widely separate regions indicate that microstylolites in carbonates form at minimum burial depths deeper than 500 m. No direct link between formation of microstylolites and cementation was found, suggesting that dissolution and precipitation are not necessarily related. Porosity rebound during core retrieval could not be detected for soft sediments, whereas a porosity rebound of ~2% was deduced for deeper, cemented intervals. Comparing the compaction curves, two distinct rates of porosity loss are noted: (1) samples dominated by clay (>45% insoluble residue) compact at a higher rate than samples dominated by fine-grained carbonate and (2) fine-grained carbonate supported samples (with <45% insoluble residue) compact at the same rate irrespective of the content of nonsupporting microfossils or pore-filling clay.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditionally, the application of stable isotopes in Carbon Capture and Storage (CCS) projects has focused on d13C values of CO2 to trace the migration of injected CO2 in the subsurface. More recently the use of d18O values of both CO2 and reservoir fluids has been proposed as a method for quantifying in situ CO2 reservoir saturations due to O isotope exchange between CO2 and H2O and subsequent changes in d18OH2O values in the presence of high concentrations of CO2. To verify that O isotope exchange between CO2 and H2O reaches equilibrium within days, and that d18OH2O values indeed change predictably due to the presence of CO2, a laboratory study was conducted during which the isotope composition of H2O, CO2, and dissolved inorganic C (DIC) was determined at representative reservoir conditions (50°C and up to 19 MPa) and varying CO2 pressures. Conditions typical for the Pembina Cardium CO2 Monitoring Pilot in Alberta (Canada) were chosen for the experiments. Results obtained showed that d18O values of CO2 were on average 36.4±2.2 per mil (1 sigma, n=15) higher than those of water at all pressures up to and including reservoir pressure (19 MPa), in excellent agreement with the theoretically predicted isotope enrichment factor of 35.5 per mil for the experimental temperatures of 50°C. By using 18O enriched water for the experiments it was demonstrated that changes in the d18O values of water were predictably related to the fraction of O in the system sourced from CO2 in excellent agreement with theoretical predictions. Since the fraction of O sourced from CO2 is related to the total volumetric saturation of CO2 and water as a fraction of the total volume of the system, it is concluded that changes in d18O values of reservoir fluids can be used to calculate reservoir saturations of CO2 in CCS settings given that the d18O values of CO2 and water are sufficiently distinct.