3 resultados para Predictor Variables
em Publishing Network for Geoscientific
Resumo:
The climatic conditions of mountain habitats are greatly influenced by topography. Large differences in microclimate occur with small changes in elevation, and this complex interaction is an important determinant of mountain plant distributions. In spite of this, elevation is not often considered as a relevant predictor in species distribution models (SDMs) for mountain plants. Here, we evaluated the importance of including elevation as a predictor in SDMs for mountain plant species. We generated two sets of SDMs for each of 73 plant species that occur in the Pacific Northwest of North America; one set of models included elevation as a predictor variable and the other set did not. AUC scores indicated that omitting elevation as a predictor resulted in a negligible reduction of model performance. However, further analysis revealed that the omission of elevation resulted in large over-predictions of species' niche breadths-this effect was most pronounced for species that occupy the highest elevations. In addition, the inclusion of elevation as a predictor constrained the effects of other predictors that superficially affected the outcome of the models generated without elevation. Our results demonstrate that the inclusion of elevation as a predictor variable improves the quality of SDMs for high-elevation plant species. Because of the negligible AUC score penalty for over-predicting niche breadth, our results support the notion that AUC scores alone should not be used as a measure of model quality. More generally, our results illustrate the importance of selecting biologically relevant predictor variables when constructing SDMs.
Resumo:
Phycobiliproteins are a family of water-soluble pigment proteins that play an important role as accessory or antenna pigments and absorb in the green part of the light spectrum poorly used by chlorophyll a. The phycoerythrins (PEs) are one of four types of phycobiliproteins that are generally distinguished based on their absorption properties. As PEs are water soluble, they are generally not captured with conventional pigment analysis. Here we present a statistical model based on in situ measurements of three transatlantic cruises which allows us to derive relative PE concentration from standardized hyperspectral underwater radiance measurements (Lu). The model relies on Empirical Orthogonal Function (EOF) analysis of Lu spectra and, subsequently, a Generalized Linear Model with measured PE concentrations as the response variable and EOF loadings as predictor variables. The method is used to predict relative PE concentrations throughout the water column and to calculate integrated PE estimates based on those profiles.
Resumo:
The composition and abundance of algal pigments provide information on phytoplankton community characteristics such as photoacclimation, overall biomass and taxonomic composition. In particular, pigments play a major role in photoprotection and in the light-driven part of photosynthesis. Most phytoplankton pigments can be measured by high-performance liquid chromatography (HPLC) techniques applied to filtered water samples. This method, as well as other laboratory analyses, is time consuming and therefore limits the number of samples that can be processed in a given time. In order to receive information on phytoplankton pigment composition with a higher temporal and spatial resolution, we have developed a method to assess pigment concentrations from continuous optical measurements. The method applies an empirical orthogonal function (EOF) analysis to remote-sensing reflectance data derived from ship-based hyperspectral underwater radiometry and from multispectral satellite data (using the Medium Resolution Imaging Spectrometer - MERIS - Polymer product developed by Steinmetz et al., 2011, doi:10.1364/OE.19.009783) measured in the Atlantic Ocean. Subsequently we developed multiple linear regression models with measured (collocated) pigment concentrations as the response variable and EOF loadings as predictor variables. The model results show that surface concentrations of a suite of pigments and pigment groups can be well predicted from the ship-based reflectance measurements, even when only a multispectral resolution is chosen (i.e., eight bands, similar to those used by MERIS). Based on the MERIS reflectance data, concentrations of total and monovinyl chlorophyll a and the groups of photoprotective and photosynthetic carotenoids can be predicted with high quality. As a demonstration of the utility of the approach, the fitted model based on satellite reflectance data as input was applied to 1 month of MERIS Polymer data to predict the concentration of those pigment groups for the whole eastern tropical Atlantic area. Bootstrapping explorations of cross-validation error indicate that the method can produce reliable predictions with relatively small data sets (e.g., < 50 collocated values of reflectance and pigment concentration). The method allows for the derivation of time series from continuous reflectance data of various pigment groups at various regions, which can be used to study variability and change of phytoplankton composition and photophysiology.