9 resultados para Pre-imaginal determination

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Innerdalen was once a mountain valley (ca. 780 m a.s.l.) with birch forests, bogs and several summer farms. Today it is a 6.5 km**2 artifical lake. In 1980 and 1981 archaeological and palynological investigations were carried out due to the hydroelectric power plans. Radiocarbon dated pollen diagrams from 9 different localities in Innerdalen provide information on a mountain environment which has been exploited to varying degrees by human groups for thousands of years. In the Birch Zone, ca. 9500-8500 years B.P., the deglaciated surface is vegetated by the normal sequence of pioneering species, first show-bed communities, then shrub/dwarf-shrub communities, and finally a birch forest community. In the Pine Zone, ca. 8500-7500 years B.P., the mixed Birch-Pine forest which prevailed at the end of the Birch Zone is replaced by a dense pine forest. The tree limit was higher than it is today. In the Alder Zone, ca. 7500-4000 years B.P., the newly arrived alder gradually succeeded pine, particularily on good soils. This alder forest has a modem analog in the pre-alpine gray alder forests in Norway. In the last part of the Alder Zone, ca. 6000-4000 years B.P., elm and hazel are nominally present on particularily rich soils, marking the edaphic and climatic optimum in Innerdalen. During this time the first evidence of human impact on the vegetation is apparent in the pollen diagrams. At both Sætersetra in the south of the valley and Liabekken in the north, forest clearance and the development of grazed grass meadows is documented, and human impact continues until the present. The Herb Zone, ca. 4000 years B.P. to 1600 A.D., is characterized by the rapid decline of alder. The forest is increasingly open, and bog formation is initiated. The sub-alpine belt of birch forest is established, probably due to the shift to a cooler, moister climate. Human activity can also have influenced the vegetational changes, although at 4 of the localities human activity also is first apparent after the alder decline. Some localities show measurably less human impact on the vegetation ca. 2600-2000 years B.P. Grazing intensity increases ca. 2000 years B.P. At the end of the Herb Zone rye and barley pollen is registered at Sætersetra and Flonan, indicating contact between the grazing activities of Innerdal and grain cultivation activities outside the valley. The Spruce Zone, ca. 1600 A.D. to the present, does not begin synchronously since the presence of long-distance transported spruce pollen at a locality is entirely dependent on the density of the vegetation ie. degree of human impact. The youngest spruce rise is ca. 1500 A.D. at Røstvangen, when summerfarming is initiated. Summerfarming activities in Innerdal produce an increasingly open landscape. Rye and barley pollen at several localities may indicate limited local cultivation, but is more likely long-distance transport via humans and domesticated animals from cultivated areas outside Innerdalen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Die untersuchten Schluffe und Kiese sind unter kaltzeitlichen Bedingungen in einem See mit Schwimmpflanzengesellschaften abgelagert worden. Zur Sedimentationszeit gab es in der Umgebung des Sees eine tundrenartige Vegetation, die auch Steppenarten enthielt.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In central Antarctica, drainage today and earlier back to the Paleozoic radiates from the Gamburtsev Subglacial Mountains (GSM). Proximal to the GSM past the Permian-Triassic fluvial sandstones in the Prince Charles Mountains (PCM) are Cretaceous, Eocene, and Pleistocene sediment in Prydz Bay (ODP741, 1166, and 1167) and pre-Holocene sediment in AM04 beneath the Amery Ice Shelf. We analysed detrital zircons for U-Pb ages, Hf-isotope compositions, and trace elements to determine the age, rock type, source of the host magma, and "crustal" model age (T(C)DM). These samples, together with others downslope from the GSM and the Vostok Subglacial Highlands (VSH), define major clusters of detrital zircons interpreted as coming from (1) 700 to 460 Ma mafic granitoids and alkaline rock, epsilon-Hf 9 to -28, signifying derivation 2.5 to 1.3 Ga from fertile and recycled crust, and (2) 1200-900 Ma mafic granitoids and alkaline rock, epsilon-Hf 11 to -28, signifying derivation 1.8 to 1.3 Ga from fertile and recycled crust. Minor clusters extend to 3350 Ma. Similar detrital zircons in Permian-Triassic, Ordovician, Cambrian, and Neoproterozoic sandstones located along the PaleoPacific margin of East Antarctica and southeast Australia further downslope from central Antarctica reflect the upslope GSM-VSH nucleus of the central Antarctic provenance as a complex of 1200-900 Ma (Grenville) mafic granitoids and alkaline rocks and older rocks embedded in 700-460 Ma (Pan-Gondwanaland) fold belts. The wider central Antarctic provenance (CAP) is tentatively divided into a central sector with negative ?Hf in its 1200-900 Ma rocks bounded on either side by positive epsilon-Hf. The high ground of the GSM-VSH in the Permian and later to the present day is attributed to crustal shortening by far-field stress during the 320 Ma mid-Carboniferous collision of Gondwanaland and Laurussia. Earlier uplifts in the ~500 Ma Cambrian possibly followed the 700-500 Ma assembly of Gondwanaland, and in the Neoproterozoic the 1000-900 Ma collisional events in the Eastern Ghats-Rayner Province at the end of the 1300-1000 Ma assembly of Rodinia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A lacustrine sediment core from Store Koldewey, northeast Greenland, was biogeochemically, biologically and sedimentologically investigated in order to reconstruct long- and short-term climatic and environmental variability. The chronology of the uppermost 189 cm of the record is based on ten 14C AMS age determinations of aquatic mosses. The record covers almost the entire Holocene and revealed changes on multidecadal to centennial scales. Dating of the oldest mosses shows that lacustrine biogenic productivity already began at around 11 cal. kyr BP. This age pre-dates the onset of biogenic productivity in other lakes on Store Koldewey by about 2 kyr. In spite of the early onset of biogenic production organic matter accumulation remained low and minerogenic sedimentation dominated. At about 9.5 cal. kyr BP moss, sulphur, organic carbon and biogenic silica content started to increase, indicating that the environment stabilized and the biogenic production in the lake adjusted to more preferable conditions. Subsequently, the biogenic productivity experienced repeated changes and varied both on long- and short-term scales. The long-term trend shows a maximum during the early Holocene thus responding to increased temperatures during the Holocene Thermal Maximum. Superimposed on the long-term trend, biogenic productivity also experienced repeated short-term fluctuations that match partly the NGRIP temperatures. The most pronounced decrease of biogenic productivity occurred at around 8.2 cal. kyr BP. Perennial lake ice coverage resulting from low temperatures is supposed to have caused decreased lacustrine biogenic productivity. From the middle Holocene to the present repeated decreases of productivity occurred that could be related to periods with severe sea-ice conditions of the East Greenland Current. Besides the dependence on air temperature it therefore demonstrates the sensitivity of lacustrine biogenic productivity in coastal high arctic areas to short-term cold spells that are mediated by the currents emanating from the Arctic Ocean. However, the data also emphasize the difficulties associated with the interpretation of lacustrine records.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The De Gerlache Seamounts are two topographic highs in the Bellingshausen Sea, southeastern Pacific. Petrological and geochemical studies together with K-Ar age determinations were carried out on four dredged basalt samples collected during a RV Polarstern expedition (ANT-XII/4) in 1995. Minor and trace element composition suggest alkaline basalt compositions. Compared to alkaline basalts of adjacent West Antarctica (the Jones Mountains) and of Peter I Island, the samples have lower mg-numbers, lower Ni and Cr contents and lower high field-strength elements (HFSE)/Nb and large-ion lithophile elements (LILE)/HFSE ratios. Three of the four samples have low K, Rb, and Cs concentrations relative to alkaline basalts. The K-depletion and other elemental concentrations may be explained by 1.1% melting of amphibole bearing mantle material. Additionally, low Rb and Ba values suggest low concentrations of these elements in the mantle source. K-Ar age determinations yield Miocene ages (20-23 Ma) that are similar in age to other alkaline basalts of West Antarctica (Thurston Island, the Jones Mountains, Antarctic Peninsula) and the suggested timing of onset of Peter I Island volcanism (~10-20 Ma). The occurrence of the DGS and Peter I Island volcanism along an older but reactivated tectonic lineation suggests that the extrusions exploited a zone of pre-existing lithospheric weakness. The alkaline nature and age of the DGS basalts support the assumption of plume activity in the Bellingshausen Sea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A close look at the sedimentology of Heinrich event 4 from the northwest Labrador Sea indicates that an extended ice margin, perhaps greater than before Heinrich events 1 or 2 (H-1 and H-2), existed in the Hudson Strait region pre-Heinrich event 4 (H-4) and, that on the basis of characteristics of the sediment unit, Heinrich event-4 was different than Heinrich events 1 or 2 (i.e., larger ice sheet collapse(?), longer duration(?), "dirtier" icebergs(?)). Other data from across the southern and eastern margin of the Laurentide Ice Sheet, as well as Greenland and the North Atlantic, support this interpretation, possibly indicating a relative mid-Wisconsin glacial maximum pre-Heinrich event 4. Many of these data also indicate that Heinrich event 4 (35 ka) resulted in serious climatic and oceanographic reorganizations. We suggest that Heinrich event 4 gutted the Hudson Strait, leaving it devoid of ice for Heinrich event 3. We further hypothesize that Heinrich event 3 did not originate from axial ice transport along the Hudson Strait; thus Heinrich event 3 may be more analogous to the proposed northward advancing ice from Ungava Bay during Heinrich event 0 than to the more typical down-the-strait flow during H-1, H-2, and H-4. Consequently, the climatic and oceanographic impacts resulting from Heinrich events are highly susceptible to the type, origin, and magnitude of ice sheet collapse, something which varied per Heinrich event during the last glacial period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Late Quaternary sediment yields from the Isfjorden drainage area (7327 km**2), a high arctic region on Svalbard characterized by an alpine landscape, have been reconstructed by using seismic stratigraphy supported by sediment core analysis. The sediments that accumulated in the fjord during and since deglaciation can be divided into three stratigraphic units. The volumes of these units were determined and converted into sediment yield rates averaged over the drainage basin. During deglaciation, 13 to 10 ka, the sediment yield was ~860 tons(t)/km**2/yr. In the early Holocene it decreased to 190 t/km**2/yr, and then increased to 390t/km**2/yr during the late Holocene Little Ice Age. When normalized to the approximate glacierized area, these rates correspond to a sediment yield of ~800 t/km**2/yr . Sediment yield from non-glacierized parts of the drainage is estimated to be 35 t/km**2/yr. At times when ice advanced to the shelf edge, sediment was scoured from the fjord and deposited on the outer shelf and in a well-defined deep sea fan. Between 200 ka and 13 ka, 328 km**3 of sediment accumulated here, corresponding to a mean sediment yield rate of 335 t/km**2/yr. This is broadly consistent with calculations based on the above rates of sediment yield in glacierized and non-glacierized areas, and on estimates, based on glacial geology, of the temporal variation in degree of glacierization over the past 200 kyr. These figures indicate that much of the glacigenic sediment on the shelf and slope was eroded from the uplands of Svalbard by small glaciers during interstadials and interglacials. The sediments were temporarily stored in the fjord prior to redeposition on the shelf and slope during ice sheet advance. Taken into consideration, such redisposition of pre-eroded material will reduce estimates of primary ice sheet erosion rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reconstruction of regional climate and the Okhotsk Sea (OS) environment for the Last Glacial Maximum (LGM), deglaciation and Holocene were performed on the basis of high-resolution records of ice rafted debris (IRD), CaCO3, opal, total organic carbon (TOC), biogenic Ba (Ba_bio) and redox sensitive element (Mn, Mo) content, and diatom and pollen results of four cores that form a north-southern transect. Age models of the studied cores were earlier established by AMS 14C data, oxygen - isotope chronostratigraphy and tephrochronology. According to received results, since 25 ka the regional climate and OS environmental conditions have changed synchronously with LGM condition, cold Heinrich event 1, Bølling -Allerød (BA) warming, Younger Dryas (YD) cooling and Pre-Boreal (PB) warming recorded in the Greenland ice core, North Atlantic sediment, and China cave stalagmites. Calculation of IRD MAR in sediment of north-south transect cores indicate an increase of sea ice formation several times in the glacial OS as compared to the Late Holocene. Accompanying ice formation, increased brine rejection and the larger potential density of surface water at the north shelf due to a drop of glacial East Asia summer monsoon precipitation and Amur River run off, led to strong enhancement of the role of the OS in glacial North Pacific Intermediate Water (NPIW) formation. The remarkable increase in OS productivity during BA and PB warming was probably related with significant reorganisation of the North Pacific deep water ventilation and nutrient input into the NPIW and OS Intermediate Water (OSIW). Seven Holocene OS millennial cold events based on the elevated values of the detrended IRD stack record over the IRD broad trend in the sediments of the studied cores have occurred synchronously with cold events recorded in the North Atlantic, Greenland ice cores and China cave stalagmites after 9 ka. Diatom production in the OS were mostly controlled by sea ice cover changes and surface water stratification induced by sea-ice melting; therefore significant opal accumulation in sediments of this basin begin from 4-6 ka ago simultaneously with a remarkable decrease of sea ice cover.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Integrated interpretation of multi-beam bathymetric, sediment-penetrating acoustic (PARASOUND) and seismic data show a multiple slope failure on the northern European continental margin, north of Spitsbergen. The first slide event occurred during MIS 3 around 30 cal. ka BP and was characterised by highly dynamic and rapid evacuation of ca. 1250 km**3 of sediment from the lower to the upper part of the continental slope. During this event, headwalls up to 1600 m high were created and ca. 1150 km**3 material from hemi-pelagic sediments and from the lower pre-existing trough mouth fan has been entrained and transported into the semi-enclosed Sophia Basin. This megaslide event was followed by a secondary evacuation of material to the Nansen Basin by funnelling of the debris through the channel between Polarstern Seamount and the adjacent continental slope. The main slide debris is overlain by a set of fining-upward sequences as evidence for the associated suspension cloud and following minor failure events. Subsequent adjustment of the eastern headwalls led to failure of rather soft sediments and creation of smaller debris flows that followed the main slide surficial topography. Discharge of the Hinlopen ice stream during the Last Glacial Maximum and the following deglaciation draped the central headwalls and created a fan deposit of glacigenic debris flows.